Original Research Article

A Study to Predict Hearing Loss in Patients Undergoing Hemodialysis by Using DPOAE

S K Singh¹, Rahul Kurkure², Suresh Mokamati³, J R Galagali⁴

¹Professor, Department of ENT, Armed Forces Medical College, Pune-411040.
 ²OIC ENT Department, MH Shillong, Meghalaya-793001.
 ³Resident, Department of ENT, Armed Forces Medical College, Pune-411040.
 ⁴Senior Advisor, Department of ENT, Command Hospital (Southern Command), Pune-411040.

Corresponding Author: Suresh Mokamati

Received: 28/01/2016

Revised: 19/02/2016

Accepted: 25/02/2016

ABSTRACT

Background: Chronic renal failure (CRF) is characterized by gradually progressive loss of renal function. Incidence of sensorineural hearing (SNHL) loss in patients with chronic renal failure and on regular haemodialysis ranges from 20 to 75%. This study was done to compare the effectiveness of distortion product otoacoustic emissions (DPOAE) in early detection of Haemodialysis associated hearing loss as compared to pure tone audiometry (PTA).

Methods: Single Center, prospective study over a 2 year period.50 subjects were evaluated for hearing before undergoing haemodialysis and after 3^{rd} and 5^{th} session of haemodialysis. The patients were evaluated for hearing by PTA and DPOAE.

Results: There was a significant difference in mean PTA thresholds and DPOAE amplitudes before and after 3 and 5 sessions of haemodialysis. Furthermore, patients' ears with normal PTA thresholds also had decreased DPOAE amplitudes.

Conclusion: DPOAEs seem to be more sensitive to incipient cochlear damage than behaviour thresholds in monitoring renal patients. Sensorineural hearing loss especially in high frequencies is frequent in patients under Haemodialysis.

Keywords: haemodialysis, otoacoustic emissions, pure tone audiometry.

INTRODUCTION

Incidence of sensorineural hearing (SNHL) loss among patients with chronic renal failure is considerably higher than in the general population. Its incidence in patients with chronic renal failure and on regular hemodialysis ranges from 20 to 75%. *Bazzi et al.* ^[1] found an incidence of 77% including patients with mild and very mild hearing loss. *Ozturan and Lam* ^[2] reported a moderate to severe hearing loss in 46% of the patients. *Bergstrom et al.* ^[3] reported hearing loss in 40% of the CRF patients on haemodialysis. The general consensus in audiometric findings among

patients with CRF claims a high frequency hearing loss ^[4] with a notch at 6 kHz. ^[2] The aetiopathogenetic mechanisms responsible for sensorineural hearing loss included osmotic alteration resulting in loss of hair cells, oedema and atrophy of specialized auditory cells. collapse of the space endolymphatic along with complications of haemodialysis. ^[5] The cochlea in patients of chronic renal failure undergoing treatment with haemodialysis has been reported to be susceptible to various insults and the patients often exhibit some amount of hearing loss, although the etiological factor(s) responsible are still controversial.^[6] Some authors have reported a depression in hearing threshold after haemodialysis while others are of the opinion that there was no relation between the two. ^[7] These auditory functions in CRF patients are estimated by methods such as otoacoustic emissions (OAEs) mainly Distortion Product OAEs (DPOAEs) and Pure Tone Audiometry (PTA). This study planned was at department of Otorhinolaryngology, in a tertiary care centre to study the effect of haemodialysis on hearing loss and to assess the effectiveness of DPOAE as a diagnostic tool in early detection of haemodialysis induced hearing loss as compared to PTA.

MATERIALS AND METHODS

Subjects: 50 subjects were selected from consenting patients of chronic renal disease who have not undergone previous haemodialysis as part of their treatment. Patients who were previously treated with haemodialysis, those with features of Uraemic encephalopathy or severe illness and history of chronic otitis media were excluded from the study.

Audiological procedures: All 50 subjects for hearing before were evaluated undergoing haemodialysis and after 3rd and 5th session of haemodialysis by PTA using AD19 Diagnostic Audiometer and DPOAE by using ICS Chartr Madsen Capella. An otological examination was carried out to middle exclude ear pathology and conductive hearing loss. Frequency specific air conduction (AC) and bone conduction (BC) thresholds from 250 to 8000 Hz. PTA performed on each patient was in soundproof room on a calibrated diagnostic audiometer. thus ensuring test-retest reliability.

Frequency specific amplitudes of DPOAE was measured from DP-Gram for f2/f1 ratio of 1.22 and L1/L2 of 65/55dB for frequencies from 250-8000 Hz. Amplitude was considered a function of f2 frequency at fixed stimuli levels (DP-grams). The DP-gram amplitude across the entire frequency range was determined for each patient

which was compared with the normative data.

Hearing evaluation and Analysis: Normal hearing was considered for thresholds less than 20 dB from 250-8000 Hz. A change of more than 10 dB in one or more frequencies was chosen to represent a significant fluctuation in hearing. The DP-gram amplitude across the entire frequency range was determined for each patient which was compared with the normative data.

Statistical analysis: Chi-Square test was applied for comparison of nominal data. For continuous variable, paired t test was applied to compare within group findings (*Pre Vs Post*). p value of <0.05 was considered as statistically significant. The data was analysed using SPSS (Statistical package for social sciences).

RESULTS

From November 2010 to August 2012 a total of 50 patients of chronic renal failure were assessed. The demographic profile of these patients was as per table 1.

Table 1: Age distribution of the patients

Age (yrs)	N (Total	
	Female	Male	
< 40	0	7 (20.00%)	7(14.00%)
40-50	10 (66.67%)	13 (37.14%)	23(46.00%)
> 50	5 (33.33%)	15(42.86%)	20(40.00%)
Grand Total	15	35	50

For right ear there was statistically significant change in mean AC thresholds before and after 3 sessions of haemodialysis in frequencies from 250-1kHz, 3kHz, 6kHz and 8 kHz. There was statistically significant change in mean AC thresholds before and after 5 sessions of haemodialysis in all the frequencies from 250-8kHz (table 2).

For left ear there was statistically significant change in mean thresholds before and after 3 sessions of haemodialysis in frequencies at 250Hz, 1kHz, 2kHz, 3kHz, 4kHz and 8kHz. There was statistically significant change in mean thresholds before and after 5 sessions of haemodialysis in all the frequencies from 250-8kHz (table 3).

AC	Before		After	03	After	05	P value	P value
Frequency	haemodialysis (dB)		Sessions	Sessions (dB)		(dB)	(Before Vs 03	(Before Vs 05
(Hz)	Mean	SD	Mean	SD	Mean	SD	sessions)	sessions)
250	8	2.47	8.5	2.31	13.5	2.31	0.024	0.001
500	8	2.47	8.5	2.31	13.5	2.31	0.024	0.001
1000	12	2.47	8.5	2.31	8	2.47	0.001	0.001
2000	8	3.03	8.3	3.86	11.3	2.82	0.08	0.001
3000	11	4.95	13	2.47	19	3.78	0.001	0.001
4000	14	3.78	15	8.45	19.3	8.21	0.16	0.001
6000	13	2.47	17.7	6.64	21	10.15	0.001	0.001
8000	18	2.47	19.7	4.33	21.6	10.22	0.001	0.001

Table 2: Change in AC threshold shift from baseline after haemodialysis (Right ear)

Paired t test is applied. P value is significant if <0.05.

Table 3: Change in AC threshold shift from baseline after haemodialysis (Left ear).

AC	Before		After 03		After 05		P value	P value
Frequency	haemodi	alysis (dB)	Sessions	Sessions (dB)		(dB)	(Before Vs 03	(Before Vs 05
(Hz)	Mean	SD	Mean	SD	Mean	SD	sessions)	sessions)
250	5.10	0.71	9.50	1.52	10.10	0.71	0.001	0.001
500	5.10	0.71	5.10	0.71	10.10	0.71	1.0	0.001
1000	10.10	0.71	5.10	0.71	5.10	0.71	0.001	0.001
2000	11.00	2.02	10.20	1.41	8.10	3.33	0.03	0.001
3000	13.00	2.47	11.00	4.95	14.80	4.40	0.001	0.001
4000	11.00	4.95	16.00	4.95	16.30	9.47	0.001	0.001
6000	13.00	2.47	14.50	7.97	21.60	10.22	0.06	0.001
8000	13.10	2.65	16.50	5.56	21.70	10.23	0.001	0.001

Paired t test is applied. P value is significant if <0.05

Table 4: Change in DPOAE am	plitude from baseline a	after haemodialysis	(Right ear).
ruble il chunge il bi oliti ulli	philude from buseline i	arter macinotatarysis	(Inghi cui).

DPOAE	Before		After 03		After 05		P value	P value
Frequency	haemodia	alysis (dB)	Sessions	(dB)	Sessions	(dB)	(Before Vs 03	(Before Vs 05
(Hz)	Mean	SD	Mean	SD	Mean	SD	sessions)	sessions)
250	6.36	0.32	6.52	0.39	6.44	0.37	0.001	0.001
500	6.43	0.20	6.39	0.17	6.29	0.14	0.001	0.001
1000	6.97	0.05	6.91	0.03	6.83	0.07	0.001	0.001
2000	7.56	1.09	7.20	1.10	7.07	1.36	0.001	0.001
3000	4.15	2.77	3.83	2.92	3.48	3.07	0.001	0.001
4000	1.37	4.84	0.58	4.94	0.12	5.29	0.001	0.001
6000	0.27	4.88	-0.29	5.18	-0.83	5.54	0.001	0.001
8000	-1.78	4.50	-2.20	4.66	-2.60	4.91	0.001	0.001

Paired t test is applied. P value is significant if <0.05.

Table 5: Change ir	DPOAF am	nlitudo from l	hasalina aftar	haamadialveie	(Loft oor)
Table 5: Change II	I DPUAE am	philude from i	basenne atter	naemourarysis	(Left ear)

Frequency	Before		After 03		After 05		P value	P value
(Hz)	haemodial	ysis (dB)	Sessions	(dB)	Sessions	(dB)	(Before Vs 03	(Before Vs 05
	Mean	SD	Mean	SD	Mean	SD	sessions)	sessions)
250	6.30	0.14	6.22	0.06	6.10	0.04	0.001	0.001
500	6.22	0.06	6.29	0.03	6.30	0.02	0.001	0.001
1000	6.97	0.05	6.78	0.04	6.70	0.01	0.001	0.001
2000	7.63	1.20	7.11	1.18	7.36	1.32	0.001	0.001
3000	4.35	2.64	3.92	2.82	3.06	3.61	0.001	0.001
4000	1.24	4.81	0.47	5.07	0.07	5.37	0.001	0.001
6000	0.19	5.15	0.01	5.41	-0.67	5.90	0.001	0.001
8000	-1.83	4.45	-1.98	4.49	-2.56	5.12	0.001	0.001

Paired t test is applied. P value is significant if <0.05.

Bone conduction figures were consistent with air conduction thresholds but were omitted from figures for the sake of clarity. There was statistically significant change in mean DPOAE amplitudes before and after 3 and 5 sessions of haemodialysis in all the frequencies from 250-8 kHz for both the ears (table 4, 5).

DISCUSSION

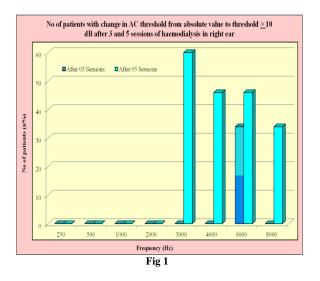
The cochlea and kidney have similar physiological mechanisms, which include the active transport of electrolytes and fluid by the stria vascularis and the glomerulus, respectively. ^[8] They may also have common antigenicity. ^[9] These may account for similar effects of medications (i.e. nephrotoxic and ototoxic effects of aminoglycosides) and immunological factors on the two organs. Various studies have shown loss of outer hair cells, deposition of blue staining concretions in the layers of stria vascularis with and without strial degeneration, shrinkage of tectorial membrane, degeneration of organ of corti & stria vascularis, thickening of Reissner's membrane and rupture of endolymphatic sac.^[10]

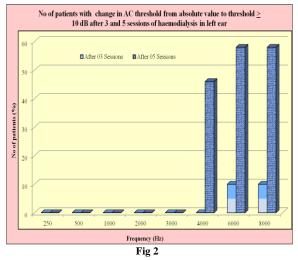
Pure tone audiometry (PTA) is the basic hearing test used to identify hearing threshold levels of an individual. However, PTA is a subjective, behavioral measurement of hearing threshold, as the results are dependent on patient's response to pure tone stimuli.

DPOAEs are an objective indicator of normally functioning cochlear outer hair cells. The response is actual intermodulation distortion product produced by the ear when stimulated by two closely spaced tones. Most robust DPOAE response is obtained when the ratio of two frequencies is 1.22:1.

On one hand there is PTA, which is the conventional standard for assessment of a hearing loss but being a subjective test its accuracy is still not established and on the other hand there is DPOAE which is noninvasive, objective, rapid, easy to use and sensitive.

In our study there were a total of 50 patients, out of these 50 patients, 35 were male and 15 were female. The age distribution of our patients was, 7 patients were below the age of 40 yrs, 23 were between the age of 40-50 yrs, 20 patients were above the age of 50 yrs (table 1).


Gatland et al. ^[6] recorded pure tone thresholds on 31 patients before and after a session of haemodialysis. They included frequency in the 125Hz study and documented a low frequency hearing loss, which improved significantly in 33 % of the patients after 3 sessions of dialysis. As lowfrequency sensorineural hearing loss is related to endolymphatic hydrops, they reported that changes in fluid balance during haemodialysis may be accountable for the hearing improvement in low frequency. Lasisi O et al in 33 CRF patients treated with haemodialysis; there was significant


difference between the mean pre- and posthemodialysis pure tone audiometry (PTA) values. DPOAE was not done due to lack of availability of instrument. ^[11] In our study there was a significant (p<0.05) difference between the mean AC hearing thresholds for both the ears before haemodialysis and after 3 and 5 sessions of haemodialysis in the frequencies from 250 to 8000 Hz except in few frequencies after 3 sessions of haemodialysis as measured by pure tone audiometry (table 2 and 3). Thus, our study has shown significant depression in hearing thresholds after 3 and 5 sessions of haemodialysis. *Bergstrom* et al. ^[3] reported hearing loss in 40% of the CRF patients on haemodialysis. Johnson and Mathog^[5] noted high frequency hearing loss in 61 adults early in the course of haemodialysis. Bergstrom and Thompson ^[12] reported that 47% of 151 paediatric end-stage renal patients had hearing loss. Hearing loss is a more common finding than vestibular dysfunction. Kusakari et al. ^[13] reported on inner ear function of 229 patients on chronic haemodialysis. They found that 60% had vestibular hearing loss. 36% had dysfunction and 26% had a combination of both

Stavroulaki P et al ^[14] assessed the effect of a single session of haemodialysis on hearing acuity in nine children with endrenal disease using stage pure-tone audiometry (PTA) and DPOAEs. No significant changes in PTA thresholds or DPOAE amplitudes were encountered in renal patients before and after a HD session (P > 0.05). Chu PL et al ^[15] assessed 40 patients in maintenance HD as well as 40 age-matched healthy subjects without hearing complaints. High-frequency hearing impairment was the predominant auditory dysfunction in HD patients who showed worse high-tone hearing level on PTA and diminished amplitudes of DPOAEs at 3000Hz and 4000Hz as compared with the controls.

In our study the difference in mean DPOAE amplitudes for both ears before haemodialysis and after 3 and 5 sessions of haemodialysis were statistically significant (p<.05) for all frequencies from 250 Hz to 8000 Hz (table 4 and 5). Thus, our results indicate that in patients with chronic renal failure on haemodialysis the ability of the cochlea to generate DPOAE appears to be significantly decreased. *Samir* et al. ^[16] also reported similar findings; corroborating the hypothesis that children with CRF (on haemodialysis) may have signs of adverse effects on function of cochlea, which might be foretelling and predictive of upcoming hearing loss.

Our study also showed that number of patients who had significant change in the hearing thresholds (≥ 10 dB) as measured by pure tone audiometry were more after 5 sessions of haemodialysis than 3 sessions of haemodialysis mainly in frequencies from 3000 to 8000 Hz (fig 1 and 2).

There were 30(60%) patients who had hearing loss after 3 and 5 sessions of haemodialysis mainly in frequencies from 3000 to 8000 Hz. This could be due to the changes induced by haemodialysis and duration and severity of disease.

Stavroulaki P et al ^[14] concluded that DPOAEs seem to be more sensitive to incipient cochlear damage than behaviour thresholds in monitoring renal patients .In our study we found that patients with significant change in hearing thresholds as measured by audiometry also showed significant changes in DPOAE amplitudes after 3 and 5 sessions of haemodialysis, those patients furthermore with no significant change in hearing thresholds also showed significant changes in DPOAE amplitudes .Therefore, DPOAEs may be useful in foretelling a substantial threshold shift for a particular frequency prior to a measurable hearing loss. The results of this study indicate that DPOAE is a sensitive tool in ascertaining the insult to the inner ear following haemodialysis even when there are no significant shifts in audiometric thresholds.

CONCLUSIONS

Great advances have been made in the management of patients on chronic dialysis, so that the life expectancy of these patients has increased dramatically. With increased patient survival and control of renal disease, the side effects on other organs have started coming to light.

In our study we have found that DPOAE is an excellent tool to detect damage to the inner ear following haemodialysis even before these changes are identifiable audiometrically.

Although a definite statement regarding the relationship between haemodialysis and hearing loss would require data from larger samples than those presently used, it seems reasonable to assume that there was a depression in the hearing threshold of patients with CRF following three and five sessions of haemodialysis in our study.

REFERENCES

- 1. Bazzi C, Venturini C, Pagani C, et al. Hearing loss in short and long-term haemodialyzed patients. Nephrol Dial Transpl 1995; 10: 1865–1868.
- Ozturan O, Lam S. The effect of hemodialysis on hearing using puretone audiometry and distortion-product otoacoustic emissions. ORL J Otorhinolaryngol Relat Spec. 1998 Nov-Dec; 60(6):306-13.
- 3. Bergstrom L, Thompson P, Sando I, et al. Renal disease. Its pathology, treatment, and effects on the ear. Arch Otolaryngol 1980; 106:567-572.
- Johnson DW, Wathen RL, Mathog RH. Effects of hemodialysis on hearing threshold. ORL J Oto Rhino lary 1976; 38: 129–139.
- Johnson DW, Mathog RH. Hearing function and chronic renal failure. Ann Oto Rhinol Laryn 1976; 85:43-49.
- Gatland D, Tucker B, Chalstrey S, et al. Hearing loss in chronic renal failure – hearing threshold changes following hemodialysis. J Roy Soc Med 1991; 84:587-589.
- Hutter JC, Kuehnert MJ, Wallis RR, et al. Acute onset decreased vision and hearing traced to hemodialysis treatment with aged dialysers. Journal of the American Medical Association. 2000; 283:2128-2134.
- 8. Arnold W. Inner ear and renal diseases. Ann Oto Rhino Lary 1984; 112 [Suppl]:119-124.

- 9. Arnold W, Weidauer H. Experimental studies in the pathogenesis of inner ear disturbances in renal diseases. Archives of Otorhinolaryngology 1975; 211:217.
- Risvi SS, Holmes RA. Hearing loss from hemodialysis. Arch Otolaryngol 1980; 106:751-756.
- 11. Lasisi AO; Salako BL; Osowole O; et al. Effect of hemodialysis on the hearing function of patients with chronic renal failure. Afr J Health Sci. 2006; 13:29-32.
- 12. Bergstrom L, Thompson P. Hearing loss in pediatric renal patients. Int J Pediatr Otol 1983; 5:227-234.
- 13. Kusakari J, Kobayashi T, Rokugo M. The inner ear dysfunction in hemodialysis patients. 1981; 135:359-369.
- 14. Stavroulaki P, Nikolopoulos TP, Psarommatis I, et al. Hearing evaluation with distortion-product otoacoustic emissions in young patients undergoing haemodialysis. Clin Otolaryngol Allied Sci. 2001 Jun; 26(3):235-42.
- 15. Chu PL, Wu CC, Hsu CJ, et al. Potential ototoxicity of aluminum in hemodialysis patients. Laryngoscope. 2007 Jan;117(1):137-41
- 16. Samir M, Riad H, Mahgoub M, et al. Transient otoacoustic emissions in children with chronic renal failure. Clin Otolaryngol 1998; 23:87-90.

How to cite this article: Singh SK, Kurkure R, Mokamat S et al. A study to predict hearing loss in patients undergoing hemodialysis by using DPOAE. Int J Res Rev. 2016; 3(2):18-23.
