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ABSTRACT 

 

In this work, we discuss the case of a non-relativistic quantum particle in the cosmic string 

space-time under the influence of the presence of external magnetic and exponential potential. 

It’s shown with the help of the Laplace transform method the second-order differential equation 

of the Schrodinger equation is solvable where it is reduced to a first-order differential equation. 

We obtain the eigenfunction and the non-relativistic energy spectrum. In addition, these results 

may be useful in the future study of thermodynamic, optic, and magnetic properties of the 

atomic interaction of a system particle. 

 

Keywords: Schrodinger equation; Laplace transform method; Position dependent mass; 

External magnetic field; Cosmic string 

 

INTRODUCTION 

The study of the quantum dynamics of a single and diatomic particle interacting with 

topological defects has attracted the attention of the physics community in recent years, due to 

its usefulness in many physics areas (Cunha & Silva, 2021; C. O. Edet et al., 2022; Mustafa, 

2022). The defect of the topology formed as a result of sudden disintegration and vacuum phase 

transition in the early universe such as cosmic string, monopoles, domain wall, and texture 

(Vanchurin et al., 2005). Several aspects of physics for instance cosmology, gauge theory, and 

condensed matter can be improved with the theory of these defects.  Moreover, some study has 

revealed the energy spectra of relativistic and non-relativistic quantum mechanical systems has 

been affected by such defects (Rebouças & Tiomno, 1933). Godel (Gödel, 1949) introduces a 

spacetime metric with an embedded cosmic string that allows the analytical study of physical 

and mathematical systems in the rotating matter. Reboucas and Tiomno (Rebouças & Tiomno, 

1933) studied the spacetime homogeneity and revealed that Godel spacetime is homogeneous. 

The motion of a quantum particle in a spinning cosmic string space-time also have been 

examined by Hassanabadi (Hassanabadi et al., 2015) and it is observed that there is a shift in 

the energy levels of a particle contrary to case static spacetime. 

Lately, researchers have devoted their effort to work on the behaviour of particles subjected to 

the influence of cosmic string topological defects by solving the Schrödinger equation with 

different potential models and external factors. These interesting works involve 

electromagnetic potential (Hassanabadi et al., 2015), Kratzer and Morse potentials (Marques 

& Bezerra, 2005), generalized Morse potential (Nwabuzor et al., 2021a), Yukawa potential (C. 

http://www.ijrrjournal.com/


Suci Faniandari et.al. Theoretical study of position-dependent mass particle in cosmic string space-time and 

external magnetic field  

 

                                      International Journal of Research and Review (ijrrjournal.com)  59 

Volume 11; Issue: 11; November 2024 

O. Edet et al., 2022), and Mobius square plus Screened Kratzer potential (Okon et al., 2021). 

The energy spectra investigation of the hydrogen atom in the cosmic string space-time also has 

been reported (Hassanabadi & Afshardoost, 2015; Ikot et al., 2016; Sobhani et al., 2018). 

The study of the energy level of a non-relativistic quantum system is still an interesting issue 

since it can reveal the behaviour and the physical properties of semiconductor or diatomic 

molecules (C. Edet & Ikot, 2022; Faniandari et al., 2022; Nwabuzor et al., 2021b; Okorie, Ikot, 

& Chukwuocha, 2020). Those results can be applied in the study of low-dimensional structures 

and are important in physics, chemistry, or engineering. The study of the physical properties 

of the system can be done directly with the partition function that involves the energy 

eigenvalue equation to the statistical physics. It can be used to interpret and predict mainly 

thermodynamic properties from the systems which are made up of many particles as well as 

several phenomena of matter, through the statistical average of dynamic amounts over a 

specific number of particles (Valencia-Ortega & Arias-Hernandez, 2018). Regarding the 

problem that arises from the semiconductors heterostructures to organic semiconductors and 

crystalline solids subject in material science, this solution may be used to model and solve as 

well (Ahmad El-Nabulsi, 2020). The properties of a molecule also have great relevance in the 

industrial sector such as playing relevant functions in the synthesis, adsorption, and phase 

transition of material (Ikot et al., 2019; Jiang et al., 2019a, 2019b; Okorie, Ikot, Chukwuocha, 

et al., 2020; Song et al., 2017). 

The solution of the Schrodinger equation as the dynamic equation which contains as close as 

possible the real information on the evolution of the above systems (Jia et al., 2017) could be 

more crucial combined with the position dependent mass particle (PDM) and the influence of 

an external magnetic field. In a complex environment, the solution of the Schrodinger equation 

with PDM allows the identification of quantum wave functions (Dong et al., 2022) and the 

investigation of vibrational properties for diatomic molecules in quantum chemical calculations 

(Ovando et al., 2019). For this case, we use the exponential type potential to describe the 

interaction of the RbH, NI, and ScI molecule since it can model the internuclear interaction 

potential energy of the molecule (Fu et al., 2019). 

Several studies have been published regarding the effects of electric or magnetic fields that 

take into account (Devillanova & Tintarev, 2020; Karayer, 2020; Oliveira & Schmidt, 2020; 

Purohit et al., 2021). Faniandari et. al reported the solution of the Schrodinger equation with 

PDM under the influence of an external magnetic field and AB field in 2022 (Faniandari et al., 

2022). The analysis of particles under these conditions would be convenient for applications in 

the fields of condensed matter physics and material science (Eshghi et al., 2017; Khordad & 

Vaseghi, 2019). 

The Laplace transform method was introduced by Pierre-Simon Laplace to simplify the 

solution of differential equations that contain physical processes (Systems of Units. Some 

Important Conversion Factors, n.d.), for this case the Schrodinger equation with exponential 

potential under the influence of an external magnetic field. This method was applied in 

quantum mechanics by Schrodinger to discuss the radial eigenfunction of the hydrogen atom 

(Rajbongshi & Singh, 2015). Among other methods that have been applied to solve the 

Schrodinger equation such as the supersymmetry approach (Faniandari et al., 2020; Suparmi 

et al., 2020), the factorization method (Jafari et al., 2019; Okorie et al., 2018; Onyenegecha et 

al., 2020), the Nikiforov-Uvarov method (Karayer, 2020; Karayer & Demirhan, 2021; Okon et 

al., 2021), the asymptotic iteration method (Ciftci & Kisoglu, 2017; C. O. Edet et al., 2020), 

and power series expansion method (Khawaja et al., 2018; Korpinar, 2019), the Laplace 

transform method considered as one of the most effective tools that can reduce the second order 

differential equation to a first order differential equation conveniently. This method was 

capable to be used in the field of engineering and physics (Arda & Sever, 2011). Several studies 

have been reported to use the Laplace transform method to obtain the solution of a relativistic 
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system with a Schrodinger-like equation, involving the Klein-Gordon equation (Miraboutalebi, 

2020; Momtazi et al., 2014; Saifullah et al., 2021) and the Dirac equation (Biswas et al., 2016; 

Eshghi et al., 2012). 

 

LITERATURE REVIEW & METHOD 

In the cylindrical coordinate, we have the transformation of variable as follows 

 𝑥 = 𝜌𝑐𝑜𝑠𝜑;  𝑦 = 𝜌𝑠𝑖𝑛𝜑;  𝑧 = 𝑧  (1) 

and the scaling factor as 

 ℎ1
2 = ℎ𝜌

2 = (
𝜕𝑥

𝜕𝜌
)

2

+ (
𝜕𝑦

𝜕𝜌
)

2

= 𝑐𝑜𝑠2𝜑 + 𝑠𝑖𝑛2𝜑 = 1  (2) 

 ℎ2
2 = ℎ𝜑

2 = (
𝜕𝑥

𝜕𝜑
)

2

+ (
𝜕𝑦

𝜕𝜑
)

2

= (−𝜌𝑠𝑖𝑛𝜑)2 + (𝜌𝑐𝑜𝑠𝜑)2 = 𝜌2  (3) 

 ℎ3
2 = ℎ𝑧

2 = (
𝜕𝑧

𝜕𝑧
)

2

= 1  (4) 

Then ℎ = ℎ1ℎ2ℎ3 = 𝜌,  
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  (5) 

In general, if we have a D-dimensional hyperspherical coordinate defined as 

 
1 1 2 1cos sin ...sin Dx r    −=   (6a) 

 
2 1 2 1sin sin ...sin Dx r    −=   (6b) 

 
1 1cos sin ...sinb b b Dx r   − −=   (6c) 

 
1 2 1cos sinD D Dx r  − − −=   (6d) 

 1cosD Dx r  −=   (6e) 

then the D-dimensional Laplacian in polar coordinates is defined as  
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For cosmic string, there is declination 𝛼 in 𝜑 given by 

 𝑑𝑠2 = −𝑐2𝑑𝑡2 + 𝑑𝜌2 + 𝛼2𝜌2𝑑𝜑2 + 𝑑𝑧2  (8) 

therefore 𝛼2𝜌2 = ℎ𝜑
2 , and the square of time independent of infinitesimal length 𝑑𝑠,  

 𝑑𝑠2 = 𝑑𝜌2 + 𝛼2𝜌2𝑑𝜑2 + 𝑑𝑧2  (9) 

and then we get  

 ∇2=
1

𝜌

𝜕

𝜕𝜌
(

1

𝜌

𝜕

𝜕𝜌
) +

1

(𝛼𝜌)2

𝜕2

𝜕𝜑2 +
𝜕2

𝜕𝑧2  (10) 

 ∇= (𝜌̂0
𝑑
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+
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𝑑
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+ 𝑧̂0

𝑑

𝑑𝑧
)   (11) 

The Schrodinger equation with magnetic field vector which is given as 
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 𝐴 = (
𝐵𝑒−𝜎𝜌

2𝛼𝜌
+

Φ𝐴𝐵

2𝜋𝜌
) 𝜑̂0  (12) 

 𝑉̃(𝜌) =
𝑒−𝜎𝜌

𝜌
  (13) 

and its position dependent mass that is a function of radial function is given as 

 𝑀(𝜌) =
𝑀0𝑒−𝜎𝜌

𝜌2   (14) 

is written as 

 {(𝑝̅ +
𝑒

𝑐
𝐴̅) .

1

2𝑀
(𝑝̅ +

𝑒

𝑐
𝐴̅) + (𝑉 − 𝐸)} 𝑓(𝑟, 𝜑) = 0  (15) 

where 

 𝑝̅ = −𝑖∇= −i (𝜌̂0
𝑑

𝑑𝜌
+

𝜑̂0

𝛼𝜌

𝑑
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𝑑

𝑑𝑧
)  (16) 

So that 
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𝑒

𝑐
𝐴̅.

1

2𝑀
𝑝̅ + 𝑝̅.

1

2𝑀

𝑒

𝑐
𝐴̅ +

𝑒

𝑐
𝐴̅.

1
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with 

 𝑝̅.
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1
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𝑒

𝑐

1
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2𝜋𝜌2))
𝑑
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  (19) 

 
1

2𝑀(𝜌)

𝑒

𝑐
𝐴̅. 𝑝̅ = −𝑖ℏ

𝑒

𝑐

1

2𝑀(𝜌)
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𝐵𝑉̃(𝜌)

2𝛼𝜌
+

Φ𝐴𝐵

2𝜋𝜌2))
𝑑

𝛼𝑑𝜑
  (20) 

By setting  𝑓(𝜌, 𝜑, 𝑧) = 𝑅(𝜌)𝑒𝑖𝑚𝜑(9) and inserting equations (10-14, 16-20) into equation 

(15), we obtain 

{ℏ2 𝑀𝜌
′

𝑀(𝜌)

𝑑𝑅(𝜌)

𝑑𝜌
− ℏ2 ((

𝑑2𝑅(𝜌)

𝑑𝜌2 +
1

𝜌

𝑑𝑅(𝜌)

𝑑𝜌
) − 𝑚2 𝑅
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𝑒

𝑐
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𝐵𝑉̃(𝜌)

2𝛼𝜌
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Φ𝐴𝐵

2𝜋𝜌2))
𝑚

𝛼
𝑅 +

[(
𝑒

𝑐
(

𝐵𝑉̃(𝜌)

2𝛼
+

Φ𝐴𝐵

2𝜋𝜌
))

2

𝑅(𝜌) + 2𝑀(𝜌)(𝑉(𝜌) − 𝐸)𝑅(𝜌)]} = 0 (21) 

𝑀𝜌
′

𝑀(𝜌)

𝑑𝑅(𝜌)

𝑑𝜌
− ((

𝑑2𝑅(𝜌)

𝑑𝜌2 +
1

𝜌

𝑑𝑅(𝜌)

𝑑𝜌
) − 𝑚2 𝑅

𝛼2𝜌2) +
2𝑒

ℏ𝑐
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𝐵𝑉̃(𝜌)

2𝛼𝜌
+

Φ𝐴𝐵
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𝑚

𝛼
𝑅 + [(

𝑒

ℏ𝑐
(

𝐵𝑉̃(𝜌)

2𝛼
+

Φ𝐴𝐵
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))

2

𝑅(𝜌) +
2𝑀
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(𝜌)(𝑉(𝜌) − 𝐸)𝑅(𝜌)] = 0 (22) 

By setting 
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=

𝐵𝑒−𝜎𝜌

2𝛼𝜌
,  

𝜙𝐴𝐵

𝜙𝑜
= 𝜉,  

𝑒𝐵

𝑀0𝑐
= 𝜔𝑐, 

ℏ𝑐

𝑒
=

ℎ𝑐

2𝜋𝑒
=

𝜙0

2𝜋
  (23) 

then the Schrodinger in equation (22) becomes 
𝑀𝜌

′

𝑀(𝜌)

𝑑𝑅(𝜌)

𝑑𝜌
− (

𝑑2𝑅(𝜌)

𝑑𝜌2
+

1

𝜌

𝑑𝑅(𝜌)

𝑑𝜌
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𝑀0
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𝑉̃(𝜌)

2𝛼𝜌
(

𝑚

𝛼
+ ξ) 𝑅 +

1

𝜌2
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𝑚

𝛼
)

2
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𝑀0

ℏ
𝜔𝑐

𝑉̃(𝜌)

2𝛼
)

2

𝑅 +
2𝑀

ℏ2
(𝜌)(𝑉(𝜌) − 𝐸)𝑅(𝜌) = 0  (24) 

By using equations (12-13) and (24) we have − (
𝑑2𝑅(𝜌)

𝑑𝜌2 + (
1

𝜌
−

𝑀𝜌
′

𝑀(𝜌)
)

𝑑𝑅(𝜌)

𝑑𝜌
) +

2
𝑀0

ℏ
𝜔𝑐

1
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𝑉0𝑒−𝜎𝜌

𝜌
(

𝑚

𝛼
+ 𝜉) 𝑅 +

1

𝜌2 (𝜉 +
𝑚

𝛼
)

2
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𝑀0

ℏ
𝜔𝑐
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2
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(𝜌)(𝑉(𝜌) −

𝐸)𝑅(𝜌) = 0   (25) 

with 

 𝑀(𝜌) =
𝑀0𝑒−𝜎𝜌

𝜌2 ; 𝑀′(𝜌) =
𝑀0𝑒−𝜎𝜌

𝜌2 (−𝜎 −
2

𝜌
)  (26) 
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𝑀′𝜌

𝑀𝜌
= −𝜎 −

2

𝜌
   (27) 

For small 𝜎, we have approximate values for 

 𝑉(𝜌) = 𝑉1 tanh 𝜎𝜌 ≈ 𝑉1𝜎𝜌  (28) 

 
𝑀0𝑒−𝜎𝜌

𝜌2 ≈
𝑀0(1−𝜎𝜌)

𝜌2 ≈ 𝑀0 (
1

𝜌2 −
𝜎

𝜌
)  (29) 

 𝑉̃(𝜌) =
𝑉0𝑒−𝜎𝜌

𝜌
≈ 𝑉0

(1−𝜎𝜌)

𝜌
≈ 𝑉0 (

1

𝜌
− 𝜎)  (30) 

By applying equations (25-30) we have 

 − (
𝑑2𝑅(𝜌)

𝑑𝜌2 + (
3

𝜌
+ 𝜎)

𝑑𝑅(𝜌)

𝑑𝜌
) + 2

𝑀0

ℏ
𝜔𝑐

𝑉0(
1

𝜌 
 − 𝜎)

2𝛼𝜌
(

𝑚

𝛼
+ 𝜉) 𝑅 +

1

𝜌2 (𝜉 +
𝑚

𝛼
)

2

𝑅 

+ (
𝑀0

ℏ
𝜔𝑐

𝑉0(
1

 𝜌
 −𝜎)

2𝛼
)

2

𝑅 +
2𝑀0(

1

𝜌2−
𝜎

𝜌
)

ℏ2
(𝑉1𝜎𝜌 − 𝐸)𝑅(𝜌) = 0  (31) 

By simple mathematical manipulation equation (31) we have 

− {
𝑑2𝑅(𝜌)

𝑑𝜌2 + (
3

𝜌
+ 𝜎)

𝜕𝑅(𝜌)

𝜕𝜌
} −

1

 𝜌
{2𝜎

𝑀0

ℏ
𝜔𝑐

𝑉0

2𝛼
[(

𝑚

𝛼
+ 𝜉) + (

𝑀0

ℏ
𝜔𝑐

𝑉0

2𝛼
)] −

2𝑀0𝜎

ℏ2
(𝑉1 + 𝐸)} 𝑅 +

1

𝜌2 [{(𝜉 +
𝑚

𝛼
) + (

𝑀0

ℏ
𝜔𝑐

𝑉0

2𝛼
)}

2

−
2𝑀0

ℏ2 𝐸] 𝑅 + {(
𝑀0

ℏ
𝜔𝑐

𝑉0

2𝛼
𝜎)

2

−
2𝑀0

ℏ2 𝑉1𝜎2} 𝑅(𝜌) = 0  (32) 

By setting 

 {2𝜎
𝑀0

ℏ
𝜔𝑐

𝑉0

2𝛼
[(

𝑚

𝛼
+ 𝜉) + (

𝑀0

ℏ
𝜔𝑐

𝑉0

2𝛼
)] −

2𝑀0𝜎

ℏ2
(𝑉1 + 𝐸)} = 𝛿  (33) 

 {(𝜉 +
𝑚

𝛼
) + (

𝑀0

ℏ
𝜔𝑐

𝑉0

2𝛼
)}

2

−
2𝑀0

ℏ2 𝐸 = 𝜏  (34) 

in equation (32), we have 

 − {
𝑑2𝑅(𝜌)

𝑑𝜌2 + (
3

𝜌
+ 𝜎)

𝜕𝑅(𝜌)

𝜕𝜌
} −

𝛿

 𝜌
𝑅 +

𝜏

𝜌2 𝑅 + {(
𝑀0

ℏ
𝜔𝑐

𝑉0

2𝛼
𝜎)

2

−
2𝑀0

ℏ2 𝑉1𝜎2} 𝑅(𝜌) = 0 (35) 

Equation (35) is solved by setting 

 𝑅(𝜌) =
𝑒

− 
𝜎𝜌
2

𝜌
3
2

𝑄  (36) 

 
𝜕𝑅(𝜌)

𝜕𝜌
= −

𝜎

2

𝑒
− 

𝜎𝜌
2

𝜌
3
2

𝑄 −
3𝑒

− 
𝜎𝜌
2

2𝜌
5
2

𝑄 +
𝑒

− 
𝜎𝜌
2

𝜌
3
2

𝑄′  (37) 

 
𝜕2𝑅(𝜌)

𝜕𝜌2
=

𝜎2

4

𝑒
− 

𝜎𝜌
2

𝜌
3
2

𝑄 + 2
3𝜎

4

𝑒
− 

𝜎𝜌
2

𝜌
5
2

𝑄 − 2
𝜎

2

𝑒
− 

𝜎𝜌
2

𝜌
3
2

𝑄′ +
5.3𝑒

− 
𝜎𝜌
2

4𝜌
7
2

𝑄 − 2
3𝑒

− 
𝜎𝜌
2

2𝜌
5
2

𝑄′ +
𝑒

− 
𝜎𝜌
2

𝜌
3
2

𝑄′′  (38) 

 (
3

𝜌
+ 𝜎)

𝜕𝑅(𝜌)

𝜕𝜌
= (−

3

𝜌

𝜎

2

𝑒
− 

𝜎𝜌
2

𝜌
3
2

𝑄 −
3

𝜌

3𝑒
− 

𝜎𝜌
2

2𝜌
5
2

𝑄 +
3

𝜌

𝑒
− 

𝜎𝜌
2

𝜌
3
2

𝑄′) + (−𝜎
𝜎

2

𝑒
− 

𝜎𝜌
2

𝜌
3
2

𝑄 − 𝜎
3𝑒

− 
𝜎𝜌
2

2𝜌
5
2

𝑄 +

𝜎
𝑒

− 
𝜎𝜌
2

𝜌
3
2

𝑄′)  (39) 

From equations (38-39) we obtain 

 
𝑑2𝑅(𝜌)

𝑑𝜌2 + (
3

𝜌
+ 𝜎)

𝜕𝑅(𝜌)

𝜕𝜌
= −

𝜎2

4

𝑒
− 

𝜎𝜌
2

𝜌
3
2

𝑄 −
3𝜎

2

𝑒
− 

𝜎𝜌
2

𝜌
5
2

𝑄 −
3𝑒

− 
𝜎𝜌
2

4𝜌
7
2

𝑄 +
𝑒

− 
𝜎𝜌
2

𝜌
3
2

𝑄′′  (40) 

By substituting equations (36, 40) into equation (35) we obtain  

 𝑄′′ − (
3

2
𝜎−𝛿

𝜌
) 𝑄 −

3

4
+𝜏

𝜌2 𝑄 − {(
𝑀0

ℏ
𝜔𝑐

𝑉0

2𝛼
)

2

+
1

4
−

2𝑀0

ℏ2 𝑉1} 𝜎2𝑄 = 0  (41) 

By setting  

 {(
𝑀0

ℏ
𝜔𝑐

𝑉0

2𝛼
)

2

+
1

4
−

2𝑀0

ℏ2
𝑉1} 𝜎2 = 𝜀2;  

3

2
𝜎 − 𝛿 = 𝑣2;   

3

4
+ 𝜏 = 𝛾2   (42) 

 

in equation (41) then it reduces to 
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 𝑄′′ − (
𝑣2

𝜌
) 𝑄 −

𝛾2

𝜌2
𝑄 − 𝜀2𝑄 = 0  (43) 

 

RESULTS & DISCUSSION 

The second order differential of the Schrodinger equation in (43) is solved using Laplace 

transform method. The first step is by setting 𝑄 = √𝜌𝜙. So that 

 𝑄′ = √𝜌𝜙′ +
1

2

𝜙

√𝜌
  (44) 

 𝑄′′ = √𝜌𝜙′′ +
1

2

𝜙′

√𝜌
+

1

2

𝜙′

√𝜌
−

1

4

𝜙

𝜌√𝜌
  (45) 

Equations (33-45) are inserted into equation (43) and we obtain 

 𝜌2𝜙′′ + 𝜌𝜙′ − 𝜌𝑣2𝜙 − 𝜅2𝜙 − 𝜌2𝜀2𝜙 = 0  (46) 

By arranging 

 𝜙 = 𝜌𝜂𝑓(𝜌)  (47) 

Equation (47) is inserted into equation (46), so we can define  

 𝜌2𝑓′′(𝜌) + (2𝜂 + 1)𝜌𝑓′(𝜌) + 𝜂2𝑓(𝜌) − (𝜌𝑣2 + 𝜅2 + 𝜌2𝜀2)𝑓(𝜌)  = 0  (48) 

Then, equation (48) reduces by setting 𝜂 = −𝜅 into 

 𝜌𝑓′′(𝜌) − (2𝜅 − 1)𝑓′(𝜌) − (𝑣2 + 𝜌𝜀2)𝑓(𝜌)  = 0  (49) 

Arranging 𝜅 = 𝑎1;  𝜀2 → 𝜀𝑛
2; and 𝑣2 = 𝑎2

2, so equation (49) become 

 𝜌𝑓′′(𝜌) − (2𝑎1 − 1)𝑓′(𝜌) − (𝑎2
2 + 𝜌𝜀𝑛

2)𝑓(𝜌)  = 0  (50) 

By applying Laplace Transform in equation (50) as follows 

 ℒ(𝑓(𝜌)) = 𝐹(𝑡) = ∫ 𝑓(𝜌)𝑒−𝑡𝜌𝑑𝑡
∞

0
  (51) 

 ℒ(𝜌𝑓′′(𝜌)) = −2𝑡𝐹(𝑡) − 𝑡2 𝑑𝐹

𝑑𝑡
  (52) 

 ℒ(𝜌𝑓′(𝜌)) = −𝑡𝐹′(𝑡) − 𝐹(𝑡)  (53) 

 ℒ(𝑓′(𝜌)) = 𝑡𝐹(𝑡)  (54) 

 ℒ(𝜌𝑓(𝜌)) = −𝐹′(𝑡)  (55) 

then equation (50) becomes 

 (𝑡2− 𝜀𝑛
2)

𝑑𝐹

𝑑𝑡
+ {(2𝑎1 + 1)𝑡 + 𝑎2

2}𝐹(𝑡) = 0  (56) 

The identity is taken by 

 
1

(𝑡+𝜀𝑛)(𝑡−𝜀𝑛)
=

1

2𝜀𝑛
(

1

𝑡−𝜀𝑛
−

1

𝑡+𝜀𝑛
)  (57) 

in equation (56) then we determine 
𝑑𝐹

𝐹
= −

{(2𝑎1+1)𝑡+𝑎2
2}

(𝑡2− 𝜀𝑛
2 )

𝑑𝑡 =
1

2𝜀𝑛
{−

{(2𝑎1+1)𝑡+𝑎2
2}

𝑡−𝜀𝑛
𝑑𝑡 +

{(2𝑎1+1)𝑡+𝑎2
2}

𝑡+𝜀𝑛
𝑑𝑡}   (58) 

By integrating equation (58) we have the wave function as 

 𝐹 = {
(𝑡−𝜀𝑛)

(𝑡+𝜀𝑛)
}

−(2𝑎1+1)

2
 − 

𝑎2
2

2𝜀𝑛 (𝑡 + 𝜀𝑛)−(2𝑎1+1)  (59) 

In order for the wave function to be single-valued, then from equation (36), we have the 

condition 

 
−(2𝑎1+1)

2
 −  

 𝑎2
2

2𝜀𝑛
= 𝑛  (60) 

and by considering the condition in equation (60) we expand equation (59) as 

𝐹 = {
(𝑡−𝜀𝑛)

(𝑡+𝜀𝑛)
}

−(2𝑎1+1)

2
 − 

𝑎2
2

2𝜀𝑛 (𝑡 + 𝜀𝑛)−(2𝑎1+1) = ∑
(−1)𝑘𝑛!

(𝑛−𝑘)!𝑘!

𝑛
𝑘=0 (2𝜀𝑛)𝑘(𝑡 + 𝜀𝑛)−(2𝑎1+1)−𝑘  (61)  

The Inverse Laplace Transform is applied, then we get 𝑓(𝜌) as 

 𝑓(𝜌) = 𝜌2𝑎1𝑒−𝜀𝑛𝜌 ∑
(−1)𝑘𝑛! Γ(2𝑎1+1)

(𝑛−𝑘)!𝑘! Γ(2𝑎1+1+𝑘)
𝑛
𝑘=0 (2𝜀𝑛𝜌)𝑘  (62) 

Hence the radial wave function is obtained as 

 𝑓(𝜌) = 𝜌2𝑎1𝑒−𝜀𝑛𝜌
1𝐹1(−𝑛, 2𝑎1 + 1; 2𝜀𝑛𝜌)  (63) 
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where the confluent hypergeometric function is defined as 

 𝐹1(−𝑛, 𝜎; 𝑥) = ∑
(−1)𝑝𝑛! Γ(𝜎)

(𝑛−𝑝)!𝑝! Γ(𝜎+𝑝)
𝑛
𝑝=0 (𝑥)𝑝  (64) 

The non-relativistic energy equation is determined from equation (60). Considering the 

condition of 

 
−(2𝑎1+1)

2
 = 𝑛 +

𝑎2
2

2𝜀𝑛
  (65) 

where 𝜅 = 𝑎1;  𝜀2 → 𝜀𝑛
2; 𝑣2 = 𝑎2

2; 𝜂 = −𝜅 

 
−(2𝜅+1)

2
 = 𝑛 +

𝑣2

2𝜀2
  (66) 

Then we look into equations (33)-(34) and (42), we substitute the variables 𝛿, 𝜏, 𝜀2, 𝑣2, 𝛾2. So 

that 

 
−(2𝜅+1)

2
 = 𝑛 +

3

2
𝜎−{2𝜎

𝑀0
ℏ

𝜔𝑐
𝑉0
2𝛼

[(
𝑚

𝛼
+𝜉)+(

𝑀0
ℏ

𝜔𝑐
𝑉0
2𝛼

)]−
2𝑀0𝜎

ℏ2 (𝑉1+𝐸)}

2{(
𝑀0

ℏ
𝜔𝑐

𝑉0
2𝛼

)
2

+
1

4
−

2𝑀0
ℏ2 𝑉1}𝜎2

  (67) 

The non-relativistic energy is obtained as 

𝐸 =
ℏ2

2𝑀0𝜎
[(𝑛 +

2𝜅+1

2
) (2 {(

𝑀0

ℏ
𝜔𝑐

𝑉0

2𝛼
)

2

+
1

4
−

2𝑀0

ℏ2
𝑉1} 𝜎2) +

3

2
𝜎 − {2𝜎

𝑀0

ℏ
𝜔𝑐

𝑉0

2𝛼
[(

𝑚

𝛼
+ 𝜉) +

(
𝑀0

ℏ
𝜔𝑐

𝑉0

2𝛼
)]} − 𝑉1

2𝑀0𝜎

ℏ2 ]    (68) 

 

In this part, we discuss the theoretical prediction of the energy level for the three selected 

diatomic molecules with the natural units. The energy of the system in equation (68) can be 

used to examine the behavior of the particle under the influence of the external magnetic fields. 

Several parameters can be applied such as for the simple diatomic molecules.  From equation 

(68), the quantum number n and the magnetic quantum number m are linear to the energy E, 

so we can infer if the energy increases linearly with the increase of the quantum number. The 

presence of the external magnetic field also has influenced the energy level to increase, since 

it has a linear ratio.  

The energy eigenvalue tends to have a positive value and was increased linearly with an 

increase in quantum number. The energy also tends to increase with the increase of 𝜎 because 

of its linear ratio. The particle is more bound with small values of 𝜎, while less bound with the 

increasing values of 𝛼. The molecule’s mass change has a non-linear effect on the plot of the 

energy level. The weigher particle has a smaller energy level for the fixed value of external 

magnetic field strength B. It is obvious that the increasing value of potential parameter V0 

caused the energy increases. The molecule’s mass change might have a negative effect on the 

plot of the energy because the relationship is inversely proportional. The weigher particle has 

a smaller energy level for the fixed value of external magnetic field strength B.  

 

CONCLUSION 

To summarize, we have solved the approximate solution of the Schrodinger equation with 

hyperbolic function position-dependent mass for an exponential potential by using the 

hypergeometric method. We consider the system influenced by external magnetic forces. The 

second-order differential equation of the Schrodinger equation is reduced to the first-order 

differential equation and so the eigenfunction and eigen energy values are obtained. We also 

analyzed the behavior of the bound state energy levels. It can be infered that the energy value 

depends on the quantum number, potential parameter, mass of the molecule, and magnetic field 

strength. These results can motivate the further study of molecular physics for several 

molecules. 
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