
                                                                                                       International Journal of Research and Review 

          Volume 11; Issue: 11; November 2024 

                                                                                                                                                       Website: www.ijrrjournal.com  

Research Paper                                                                                                             E-ISSN: 2349-9788; P-ISSN: 2454-2237 

 

                                      International Journal of Research and Review (ijrrjournal.com)  215 

Volume 11; Issue: 11; November 2024 

Design and Simulation of Adaptive Filters in Real-

Time Environment 
 

Joshua Okoekhian1, Mathurine Guiawa2, Ikenna Onyegbadue3 
 

1,2,3Electrical/Electronic Engineering Department   
1,2,3College of Engineering, Igbinedion University Okada, Edo State, Nigeria 

 

Corresponding Author: Joshua Okoekhian 
 

DOI: https://doi.org/10.52403/ijrr.20241118 

 
 

ABSTRACT 

 

The results of the study showed that 

adaptive filters  were designed and 

simulated to enhance signal processing 

capabilities in real-time environments. The 

study focused on the LMS and NLMS 

algorithms for echo and noise cancellation 

in audio signals, exploring the impact of 

different mu values (0.01, 0.05, 0.1, and 0.5) 

on algorithm performance. A 

comprehensive literature review 

underscored the importance of effective 

adaptive filtering techniques in real-time 

audio processing and highlighted the trade-

off between convergence speed and 

stability. The results indicated that a mu 

value between 0.05 and 0.1 optimally 

balances convergence speed and stability for 

both LMS and NLMS algorithms. The 

NLMS algorithm consistently outperformed 

LMS due to its superior adaptation to signal 

power variations and better stability at 

higher mu values. Recommendations 

include using the NLMS algorithm for most 

applications, careful tuning of the mu value, 

and further research into adaptive and 

hybrid methods. These findings aimed to 

enhance echo and noise cancellation, 

resulting in clearer and more intelligible 

audio signals in real-world applications. 

 

Keywords: Adaptive Filters, LMS 

Algorithm, NLMS Algorithm, Real-Time 

Signal Processing 

 

INTRODUCTION 

In today's rapidly evolving digital world, the 

demand for efficient signal processing 

techniques in real-time environments has 

surged across various domains such as 

telecommunications, audio processing, 

biomedical engineering, and more (Avalos 

et al., 2011; Tan & Jiang, 2018; Sahaana, 

2022). Adaptive filtering has emerged as a 

crucial tool in addressing the challenges 

posed by varying environments, non-

stationary signals, and noise interference. 

Adaptive filters dynamically adjust their 

parameters based on the input data, allowing 

them to adapt to changing conditions and 

enhance the desired signal while attenuating 

unwanted components (Aboy et al., 2005) 

The motivation behind this project stems 

from the need to further explore and 

understand the capabilities of adaptive 

filters in real-time signal processing 

scenarios. Despite significant advancements 

in adaptive filtering techniques, there 

remains a continuous quest for more 

efficient algorithms and methodologies to 

address specific application requirements 

(Ahirwal et al., 2021; Comminiello et al., 

2022). By delving into the design and 

simulation of adaptive filters, this study 

seeks to contribute to the on-going efforts 

aimed at improving signal processing 

capabilities in real-time environments. 

Several studies have highlighted the 

importance of adaptive filtering in various 

applications. For instance, in 

telecommunications, adaptive filters are 

http://www.ijrrjournal.com/


Joshua Okoekhian et.al. Design and simulation of adaptive filters in real-time environment 

                                      International Journal of Research and Review (ijrrjournal.com)  216 

Volume 11; Issue: 11; November 2024 

employed for echo cancellation, channel 

equalization, and interference suppression 

(Haykin, 2017; Diniz, 2019). Similarly, in 

biomedical signal processing, adaptive 

filters play a crucial role in de-noising 

electrocardiogram (ECG) signals and 

removing artefacts (Moody et al., 2001; 

Rupp et al., 2016; Qin et al., 2024). The 

versatility of adaptive filters makes them 

indispensable tools in diverse fields, driving 

the need for continued research and 

development. 

This research aimed to design and simulate 

adaptive filters to enhance signal processing 

capabilities in real-time environments.  

 

LITERATURE REVIEW 

Adaptive filters are a class of signal 

processing filters that automatically adjust 

their parameters to optimize their 

performance in response to changing input 

signals or operating conditions. Unlike 

traditional fixed filters, which have 

predetermined coefficients, adaptive filters 

continuously update their coefficients based 

on the input data and a specified 

optimization criterion. This adaptability 

enables adaptive filters to effectively 

mitigate noise, suppress interference, and 

enhance the desired signals in dynamic and 

non-stationary environments (Cowan, 1996; 

Apolinário & Netto, 2008 ;). 

At the core of adaptive filtering is the 

concept of error minimization through 

iterative adjustment of filter coefficients. 

The adaptation process typically involves 

the comparison of the filter output with a 

reference signal or desired response, known 

as the error signal. By minimizing this error 

signal over time, adaptive filters converge 

towards optimal coefficient values that best 

approximate the desired signal while 

minimizing distortion and interference (Tan 

& Jiang, 2018; Diniz, 2019). 

Various adaptive filter algorithms exist, 

each offering distinct advantages and trade-

offs depending on the application 

requirements and computational resources 

available. Some commonly used adaptive 

filter algorithms include: 

1. Least Mean Squares (LMS) Algorithm: 

The LMS algorithm is a widely 

employed adaptive filtering algorithm 

due to its simplicity and computational 

efficiency. It updates filter coefficients 

in the direction of the gradient of the 

mean square error, making it suitable for 

applications with large datasets and real-

time processing requirements (Hayes, 

1996; Haykin & Widrow, 2003; Liu, et 

al., 2011; Diniz, 2019). 

2. Recursive Least Squares (RLS) 

Algorithm: The RLS algorithm 

recursively computes the filter 

coefficients by minimizing the sum of 

squared errors over a finite data 

window. RLS offers faster convergence 

rates and improved tracking 

performance compared to LMS but may 

be computationally more demanding, 

particularly for large filter lengths (Albu 

et al., 2001; Ifeachor & Jervis, 2002; Xu 

et al., 2002; Van Vaerenbergh et al., 

2012). 

3. Normalized LMS Algorithm: The 

normalized LMS algorithm enhances the 

stability and convergence properties of 

the LMS algorithm by normalizing the 

step size based on the input signal 

power. This adaptation mechanism 

enables the algorithm to maintain stable 

operation across varying signal power 

levels (Bershad & Feintuch, 1986; 

Hayes, 1996; Haykin & Widrow, 2003; 

Liu, et al., 2011; Diniz, 2019). 

4. Kalman Filter: The Kalman filter is an 

optimal recursive algorithm used for 

estimation in dynamic systems subject 

to Gaussian noise. It combines 

information from measurements and a 

dynamic model to estimate the state of a 

system while minimizing the mean 

square error (Zarchan & Musoff, 2000; 

Stepanov, 2011; Fauzi & Batool, 2019; 

Lora-Millan et al., 2021; Kalita & 

Lyakhov, 2022). 

5. Adaptive Noise Cancelling (ANC) 

Algorithms: ANC algorithms aim to 

suppress unwanted noise or interference 

by adaptively adjusting a filter to match 



Joshua Okoekhian et.al. Design and simulation of adaptive filters in real-time environment 

                                      International Journal of Research and Review (ijrrjournal.com)  217 

Volume 11; Issue: 11; November 2024 

the characteristics of the noise. These 

algorithms are particularly useful in 

applications such as echo cancellation, 

active noise control, and interference 

suppression. 

Adaptive filters offer a powerful and 

versatile approach to signal processing in 

dynamic and noisy environments. By 

continuously adjusting their parameters 

based on input data, adaptive filters can 

adapt to changing conditions and effectively 

enhance signal quality in real-time 

applications. 

 

Various Adaptive Filter Algorithms 

Least Mean Squares (LMS) Algorithm 

The Least Mean Squares (LMS) algorithm 

is one of the most widely used adaptive 

filter algorithms due to its simplicity and 

computational efficiency (Haykin, 2017). In 

the LMS algorithm, filter coefficients are 

iteratively adjusted in the direction of the 

negative gradient of the mean square error 

with respect to the filter weights. 

Mathematically, the weight update equation 

for the LMS algorithm can be expressed as: 

𝒉(𝑛 + 1) = 𝒉(𝑛) + 𝜇𝑒(𝑛)𝒙(𝑛) 

Where: 

 𝒉(𝑛) is the vector of filter coefficients at 

iteration n 

 𝜇 is the adaptation step size (also known as 

the learning rate) 

 𝑒(𝑛) is the error signal at iteration n, 𝒙(𝑛) 

is the input signal vector at iteration n. 

The LMS algorithm is particularly suitable 

for applications with large datasets and real-

time processing requirements, as it updates 

filter coefficients incrementally based on 

individual data samples. 

  

Normalized LMS Algorithm 

The Normalized Least Mean Squares (LMS) 

algorithm is a variation of the traditional 

LMS algorithm that improves its stability 

and convergence characteristics, particularly 

in scenarios where the input signal power 

varies significantly (Haykin, 2017). In the 

Normalized LMS algorithm, the adaptation 

step size is adjusted based on the power of 

the input signal, ensuring that the algorithm 

remains stable even when the input signals 

amplitude changes. The weight update 

equation for the Normalized LMS algorithm 

can be expressed as: 

𝒉(𝑛 + 1) = 𝒉(𝑛) +
𝜇

‖𝒙(𝑛)‖2 + 𝜖
𝑒(𝑛)𝒙(𝑛) 

Where: 

 𝒉(𝑛) is the vector of filter coefficients at 

iteration n, 

 𝜇 is the adaptation step size (learning rate), 

 𝑒(𝑛) is the error signal at iteration n, 

 𝒙(𝑛) is the input signal vector at iteration n 

 ‖𝒙(𝑛)‖2 is the squared magnitude of the 

input signal vector, 

 𝜖 is a small positive constant (typically 

used to avoid division by zero). 

The Normalized LMS algorithm ensures 

that the algorithm's behaviour is consistent 

across different signal power levels. This 

improves the algorithm's stability and 

convergence properties, making it suitable 

for a wide range of real-time signal 

processing applications. The Normalized 

LMS algorithm is particularly useful in 

scenarios where the input signal amplitude 

varies significantly, such as in adaptive 

equalization and echo cancellation 

applications. 

  

Recursive Least Squares (RLS) 

Algorithm 

The Recursive Least Squares (RLS) 

algorithm is another widely used adaptive 

filter algorithm that offers faster 

convergence rates and improved tracking 

performance compared to the LMS 

algorithm (Haykin, 2017). In the RLS 

algorithm, filter coefficients are recursively 

updated using an exponentially weighted 

least squares estimation approach. The 

weight update equation for the RLS 

algorithm can be expressed as: 

𝒉(𝑛 + 1) = 𝒉(𝑛) +
1

𝜆
𝑷(𝑛)𝒙(𝑛)𝑒(𝑛) 

Where: 

 𝜆 is the forgetting factor 0 < 𝜆 ≤ 1, 

 𝑷(𝑛) is the inverse of the autocorrelation 

matrix at iteration n. 

The RLS algorithm is particularly effective 

in scenarios where the input signal statistics 



Joshua Okoekhian et.al. Design and simulation of adaptive filters in real-time environment 

                                      International Journal of Research and Review (ijrrjournal.com)  218 

Volume 11; Issue: 11; November 2024 

change over time or when a high tracking 

speed is required. However, it may be 

computationally more demanding, 

especially for large filter lengths, due to the 

need to invert the autocorrelation matrix. 

These adaptive filter algorithms, along with 

others such as the Normalized LMS 

algorithm and Kalman filter algorithms, 

offer a range of options for adaptively 

filtering signals in real-time environments, 

each with its own advantages and 

limitations. 

 

Kalman Filter 

The Kalman filter is an optimal recursive 

algorithm used for estimation in dynamic 

systems subject to Gaussian noise (Haykin, 

2017). It combines information from 

measurements and a dynamic model to 

estimate the state of a system while 

minimizing the mean square error. The 

Kalman filter operates in two main stages: 

prediction and update. The prediction 

equation is given by: 

𝐱̂(𝑛|𝑛 − 1) = 𝑭(𝑛)𝐱̂(𝑛 − 1|𝑛 − 1)
+ 𝑩(𝑛)𝐮(𝑛) 

Where:  

 𝐱̂(𝑛|𝑛 − 1) is the predicted state estimate at 

time n, 

 𝑭(𝑛) is the state transition matrix at time n,  

 𝐱̂(𝑛 − 1|𝑛 − 1) is the previous state 

estimate,  

 𝑩(𝑛) is the control input matrix at time n, 

 𝐮(𝑛) is the control input vector at time n. 

 

The update equation is given by: 

𝐱̂(𝑛|𝑛) = 𝐱̂(𝑛|𝑛 − 1)
+ 𝑲(𝑛)[𝒛(𝑛)
− 𝑯(𝑛)𝐱̂(𝑛|𝑛 − 1)] 

𝑷(𝑛|𝑛) = [𝐈 − 𝐊(𝑛)𝑯(𝑛)]𝑷(𝑛|𝑛 − 1) 

Where: 

 𝐱̂(𝑛|𝑛) is the updated state estimate at time  

n, 

 𝑲(𝑛) is the Kalman gain matrix at time n, 

 𝒛(𝑛) is the measurement vector at time n,  

𝑯(𝑛) is the measurement matrix at time n, 

 𝑷(𝑛|𝑛) is the updated error covariance 

matrix at time n, 

 I is the identity matrix. 

The Kalman filter is widely used in various 

applications, including navigation, control 

systems, and tracking, where accurate 

estimation of system states is crucial. 

 

Applications of Adaptive Filters 

Adaptive filters find diverse applications 

across various fields due to their ability to 

dynamically adjust to changing signal 

conditions and effectively enhance signal 

processing tasks. Some common 

applications of adaptive filters include: 

1. Echo Cancellation: In 

telecommunications and audio 

processing systems, echo cancellation is 

crucial for removing echoes caused by 

signal reflections. Adaptive filters are 

particularly effective as they can 

dynamically estimate and subtract the 

echo component from the received 

signal. This results in significantly 

improved voice quality and 

intelligibility during communication, 

making conversations clearer and more 

pleasant for users (Messini & Djendi, 

2019). 

2. Active Noise Control (ANC): Adaptive 

filters are extensively used in ANC 

systems to reduce or eliminate unwanted 

noise from audio signals. These filters 

adjust their coefficients adaptively based 

on a reference signal containing the 

noise component. By doing so, ANC 

systems can effectively cancel out noise, 

creating a quieter and more comfortable 

environment. This technology is widely 

applied in various settings, including 

headphones, car cabins, and industrial 

machinery, enhancing user experience 

and operational efficiency (Lu et al., 

2021). 

3. Biomedical Signal Processing: In 

biomedical engineering, adaptive filters 

play a pivotal role in de-noising and 

artifact removal from physiological 

signals such as electrocardiograms 

(ECG), electroencephalograms (EEG), 

and electromyograms (EMG). By 

adaptively filtering out noise and 

interference, these filters enhance the 



Joshua Okoekhian et.al. Design and simulation of adaptive filters in real-time environment 

                                      International Journal of Research and Review (ijrrjournal.com)  219 

Volume 11; Issue: 11; November 2024 

accuracy of diagnostic information 

extracted from biomedical signals, 

thereby improving patient monitoring 

and diagnosis. This leads to better 

healthcare outcomes and more precise 

medical interventions (Bruce, 2001; 

Devasahayam, 2019). 

4. Channel Equalization: In digital 

communication systems, adaptive filters 

are crucial for channel equalization, 

compensating for channel distortions 

and inter-symbol interference (ISI). By 

continuously adjusting the filter 

coefficients based on the received signal 

and channel characteristics, adaptive 

equalizers effectively mitigate the 

effects of channel distortion. This 

capability ensures reliable 

communication in various applications, 

including wireless communication 

systems, digital modems, and broadband 

communication networks (Huq et al., 

2009). 

5. System Identification: Adaptive filters 

are instrumental in system identification 

tasks, where the objective is to estimate 

the impulse response or transfer function 

of a dynamic system. By applying 

adaptive filtering techniques to input-

output data from the system, these filters 

can accurately model and identify the 

system dynamics. This capability is 

essential for system analysis, control, 

and optimization across various 

engineering applications, providing 

valuable insights into system behavior 

and facilitating more effective system 

management (Ljung, 2015). 

 

MATERIALS AND METHOD 

The development of a real-time simulation 

environment for adaptive filtering research 

requires careful consideration of software 

and hardware requirements to ensure 

optimal performance and functionality. The 

following outlines the key software and 

hardware components needed for setting up 

the simulation environment: 

 

 

Software Requirements: 

1. Simulation Software: Utilize simulation 

software such as MATLAB/Simulink, a 

specialized simulation tools tailored for 

real-time signal processing. 

2. Programming Environments: Install 

programming environments and 

development tools for algorithm 

implementation, simulation scripting, 

and data analysis. MATLAB, a 

specialized DSP development 

environment. 

3. Signal Processing Libraries: Incorporate 

signal processing libraries and toolboxes 

for implementing adaptive filtering 

algorithms, signal generation, noise 

modelling, and system simulation. 

Libraries such as DSP System Toolbox 

in MATLAB provide comprehensive 

support for signal processing tasks. 

4. Simulation Models: Develop simulation 

models and algorithms for adaptive 

filtering, system modelling, signal 

generation, and noise addition. Use 

simulation software or programming 

environments to implement and validate 

the models. 

5. Visualization Tools: Integrate 

visualization tools and plotting libraries 

for real-time monitoring, data 

visualization, and performance analysis. 

Tools as MATLAB plots, a specialized 

visualization software facilitate data 

visualization and interpretation. 

 

Hardware Requirements: 

1. Computing Platform: Choose a 

computing platform capable of running 

simulation software and performing 

real-time signal processing tasks. 

Options include desktop computers, 

workstations, embedded systems, or 

specialized hardware platforms with 

sufficient computational resources. 

2. Processor and Memory: Selecting a 

processor with adequate computational 

power and memory capacity to handle 

real-time signal processing tasks. Multi-

core processors, high-speed processors, 



Joshua Okoekhian et.al. Design and simulation of adaptive filters in real-time environment 

                                      International Journal of Research and Review (ijrrjournal.com)  220 

Volume 11; Issue: 11; November 2024 

and sufficient RAM are essential for 

efficient simulation execution. 

 

Simulation Setup and Configuration 

Once the software and hardware 

requirements are identified, the next step is 

to set up and configure the simulation 

environment for conducting real-time 

adaptive filtering experiments. The 

following steps outline the simulation setup 

and configuration process: 

1. Environment Configuration: Install 

and configure the simulation software, 

programming environments, and 

required libraries on the computing 

platform. Ensure compatibility and 

proper integration of software 

components for seamless operation. 

2. Algorithm Implementation: 

Implement adaptive filtering algorithms, 

signal processing routines, and system 

models using the chosen programming 

environment. Develop modular and 

efficient code for algorithm execution, 

data processing, and visualization. 

3. Simulation Setup: Define simulation 

parameters, such as sampling rate, signal 

duration, noise characteristics, and 

system dynamics. Configure simulation 

models, algorithm parameters, and 

input/output interfaces according to the 

research objectives and experimental 

design. 

4. Real-Time Execution: Execute the 

simulation in real-time mode to ensure 

timely processing of signals and 

interactions with external devices. 

Monitor system performance, CPU 

usage, and memory usage to optimize 

algorithm execution and prevent runtime 

errors. 

 

Implementation of Adaptive Filter 

Algorithms 

The implementation of adaptive filter 

algorithms involves translating the 

mathematical formulations of the algorithms 

into executable code for simulation and real-

time processing. This process requires 

careful consideration of algorithmic details, 

programming techniques, and optimization 

strategies to ensure efficient and accurate 

execution. The following steps outline the 

implementation process for adaptive filter 

algorithms: 

1. Algorithm Selection: Choose the 

appropriate adaptive filter algorithms 

based on the research objectives, 

application requirements, and 

performance considerations. Common 

adaptive filter algorithms include the 

Least Mean Squares (LMS), and 

Normalized LMS,  

2. Algorithm Formulation: Formulate the 

selected adaptive filter algorithms in 

terms of mathematical equations and 

update rules. Understand the underlying 

principles, convergence properties, and 

parameter dependencies of the 

algorithms to guide the implementation 

process effectively. 

3. Programming Environment: Select a 

suitable programming environment and 

language for algorithm implementation. 

MATLAB, a specialized DSP 

development environment would 

suffice.  

4. Code Development: Develop modular 

and efficient code to implement the 

adaptive filter algorithms. Break down 

the algorithm into manageable 

components, such as initialization, 

coefficient updates, error calculation, 

and convergence monitoring, to 

facilitate code organization and 

readability. 

5. Parameter Initialization: Initialize the 

algorithm parameters, such as filter 

coefficients, step size (learning rate), 

and other control parameters. Proper 

initialization ensures stability, 

convergence, and optimal performance 

of the adaptive filter algorithms. 

6. Signal Processing Operations: 

Implement signal processing operations, 

such as signal acquisition, pre-

processing, filtering, and post-

processing, as needed for the specific 

application. Incorporate signal 

generation, noise modelling, and data 



Joshua Okoekhian et.al. Design and simulation of adaptive filters in real-time environment 

                                      International Journal of Research and Review (ijrrjournal.com)  221 

Volume 11; Issue: 11; November 2024 

manipulation routines to simulate 

realistic signal scenarios and 

experimental conditions. 

7. Simulation and Testing: Validate the 

implemented adaptive filter algorithms 

through simulation and testing. Use 

synthetic data generated from simulation 

models or real-world data collected from 

experiments to assess algorithm 

performance, convergence behaviour, 

and robustness under various conditions. 

 

Performance Metrics and Evaluation 

Criteria 

Performance metrics and evaluation criteria 

play a crucial role in assessing the 

effectiveness, efficiency, and robustness of 

adaptive filter algorithms in signal 

processing applications. These metrics 

provide quantitative measures of algorithm 

performance and enable comparison 

between different algorithms, parameter 

settings, and system configurations. The 

selection of appropriate performance 

metrics depends on the specific research 

objectives, application requirements, and 

desired outcomes. Some common 

performance metrics and evaluation criteria 

for adaptive filter algorithms include: 

1. Mean Square Error (MSE): MSE is a 

measure of the average squared 

difference between the estimated output 

of the adaptive filter and the desired 

output. It quantifies the accuracy of the 

filter in approximating the desired signal 

and is commonly used as a primary 

performance metric in adaptive filtering. 

2. Convergence Speed: Convergence 

speed refers to the rate at which the 

adaptive filter algorithm converges to a 

stable solution. It measures how quickly 

the filter adapts to changes in the input 

signals and reaches a steady-state 

condition. Faster convergence speed is 

desirable for real-time applications with 

dynamic signal conditions. 

3. Computational Complexity: 

Computational complexity assesses the 

computational resources required to 

execute the adaptive filter algorithm. It 

includes measures such as the number of 

multiplications, additions, memory 

accesses, and processing time needed 

per iteration. Lower computational 

complexity indicates more efficient 

algorithm implementation. 

4. Simulation and Experimental 

Validation: Simulation and 

experimental validation assess the 

performance of the adaptive filter 

algorithm using synthetic data generated 

from simulation models or real-world 

data collected from experiments. 

Validation ensures that the algorithm 

meets the desired performance criteria 

and accurately captures the underlying 

signal characteristics and system 

behaviour. 

 

Design Equations 

Least Mean Squares (LMS) algorithm 

The Least Mean Squares (LMS) algorithm 

is a widely used adaptive filter algorithm in 

the field of signal processing and machine 

learning. It is often employed for tasks like 

noise cancellation, system identification, 

and equalization. The derivation of the LMS 

algorithm involves minimizing the mean 

squared error between the desired response 

and the estimated response of a system. 

Here's a derivation of the LMS algorithm 

from first principles: 

Considering a discrete-time linear system 

described by the following equation: 

𝑦(𝑛) = ∑ ℎ(𝑘)𝑥(𝑛 − 𝑘) + 𝑣(𝑛)

𝑀−1

𝑘=0

 

Where: 

 𝑦(𝑛) is the output of the system at time n; 

 𝑥(𝑛) is the input to the system at time n; 

 ℎ(𝑘) are the unknown system coefficients 

to be estimated? 

 𝑣(𝑛) is the additive noise.  

The goal is to estimate the unknown system 

coefficients ℎ(𝑘) using the Least Mean 

Squares (LMS) algorithm. 

 The error at time n is defined as: 

𝑒(𝑛) = 𝑑(𝑛) − 𝑦(𝑛) 

Where: 



Joshua Okoekhian et.al. Design and simulation of adaptive filters in real-time environment 

                                      International Journal of Research and Review (ijrrjournal.com)  222 

Volume 11; Issue: 11; November 2024 

 𝑑(𝑛) is the desired response or the target 

output. 

The mean squared error (MSE) is defined 

as: 

𝑱 =
1

2
𝔼[𝑒2(𝑛)] 

Where 

 𝔼[∙] denotes the expectation operator. 

To minimize the mean squared error, we 

need to update the filter coefficients ℎ(𝑘) in 

such a way that the error is minimized. The 

LMS algorithm uses a stochastic gradient 

descent approach to update the filter 

coefficients. 

The update rule for the LMS algorithm is 

given by: 

∆ℎ(𝑘) = 𝜇𝑒(𝑛)𝑥(𝑛 − 𝑘) 

Where: 

 𝜇 is the step size or the learning rate. 

Using the update rule, we can update the 

filter coefficients as follows: 

ℎ(𝑘 + 1) = ℎ(𝑘) + ∆ℎ(𝑘) 

Substituting the expression for ∆ℎ(𝑘), we 

get: 

ℎ(𝑘 + 1) = ℎ(𝑘) + 𝜇𝑒(𝑛)𝑥(𝑛 − 𝑘) 

To derive the LMS algorithm, we need to 

substitute the expression for the error (n) 

into the update rule. This gives: 

 

ℎ(𝑘 + 1) = ℎ(𝑘) + 𝜇[𝑑(𝑛) − 𝑦(𝑛)]𝑥(𝑛 − 𝑘) 

ℎ(𝑘 + 1) = ℎ(𝑘) + 𝜇 [𝑑(𝑛) − ∑ ℎ(𝑖)𝑥(𝑛 − 𝑖)

𝑀−1

𝑖=0

] 𝑥(𝑛 − 𝑘) 

 

This is the update rule for the LMS 

algorithm. It updates the filter coefficients 

iteratively based on the error between the 

desired response and the estimated response 

of the system. The LMS algorithm can be 

implemented in real-time and is 

computationally efficient, making it suitable 

for online learning applications. It 

converges to the optimal solution in the 

mean square sense under certain conditions 

on the input signals and the step size. 

 

Normalized Least Mean Squares (NLMS) 

algorithm  

NLMS is a variation of the LMS algorithm 

that normalizes the step size by the square 

of the input signal. This normalization 

ensures that the step size adapts to the 

variations in the input signal, leading to 

better convergence properties, especially 

when dealing with signals of varying 

magnitudes. 

Starting from the same discrete-time linear 

system equation: 

𝑦(𝑛) = ∑ ℎ(𝑘)𝑥(𝑛 − 𝑘) + 𝑣(𝑛)

𝑀−1

𝑘=0

 

Where: 

 𝑦(𝑛) is the output of the system at time n; 

 𝑥(𝑛) is the input to the system at time n; 

 ℎ(𝑘) are the unknown system coefficients 

to be estimated; 

 𝑣(𝑛) is the additive noise. 

The error at time n is defined as: 

𝑒(𝑛) = 𝑑(𝑛) − 𝑦(𝑛) 

Where: 

 𝑑(𝑛) is the desired response or the target 

output. 

The NLMS algorithm updates the filter 

coefficients as follows: 

ℎ(𝑘 + 1) = ℎ(𝑘) +
𝜇

‖𝑥(𝑛)‖2
𝑒(𝑛)𝑥(𝑛 − 𝑘) 

Where: 

 𝜇 is the step size or the learning rate; 

 ‖𝑥(𝑛)‖2 is the squared norm of the input 

signal at time n. 

The squared norm of the input signal is 

given by: 

‖𝑥(𝑛)‖2 = ∑ |𝑥(𝑛 − 𝑖)|2

𝑀−1

𝑖=0

 

Substituting this expression into the NLMS 

update rule: 

 

ℎ(𝑘 + 1) = ℎ(𝑘) +
𝜇

‖𝑥(𝑛)‖2
𝑒(𝑛)𝑥(𝑛 − 𝑘) 



Joshua Okoekhian et.al. Design and simulation of adaptive filters in real-time environment 

                                      International Journal of Research and Review (ijrrjournal.com)  223 

Volume 11; Issue: 11; November 2024 

ℎ(𝑘 + 1) = ℎ(𝑘) +
𝜇

∑ |𝑥(𝑛 − 𝑖)|2𝑀−1
𝑖=0

𝑒(𝑛)𝑥(𝑛 − 𝑘) 

 

This is the update rule for the NLMS 

algorithm. It updates the filter coefficients 

based on the error between the desired 

response and the estimated response of the 

system, normalized by the squared norm of 

the input signal. 
 

 
 

Figure 1: Simulation Flowchart 

 

RESULTS AND DISCUSSION 

Simulation input parameters 

The following input parameters for the 

simulation were used in MATLAB, and 

were presented in table 1 along with a 

detailed explanation of each parameter: 

 
Table 1: Simulation input parameters value description and explanation 

Parameter Value/Description Explanation 

audioFilePath Fullfile (path, file) The full path to the selected audio file. 

Fs Sample rate of the audio file (e.g., 

44100 Hz) 

Sampling frequency of the audio signal, which 

determines how often the audio signal is sampled. 

N Length of the audio signal d Total number of samples in the audio signal. 



Joshua Okoekhian et.al. Design and simulation of adaptive filters in real-time environment 

                                      International Journal of Research and Review (ijrrjournal.com)  224 

Volume 11; Issue: 11; November 2024 

T (0:N-1) / Fs Time vector corresponding to each sample in the 

audio signal. 

X d + randn(N, 1) * 0.5 Audio signal with added Gaussian noise (standard 

deviation of 0.5). 

echo_delay round(0.1 * Fs) Delay for the echo effect, set to 0.1 seconds. 

echo_gain 0.5 Gain of the echo signal, set to 0.5. 

echo_signal zeros(echo_delay, 1); x(1:end - 

echo_delay) * echo_gain 

Simulated echo signal with specified delay and gain. 

Noise randn(N, 1) * 0.2 Noise added to the mixed signal (standard deviation 

of 0.2). 

mixed_signal x + echo_signal + noise Combined signal consisting of the original signal, 

echo, and noise. 

mu_values [0.01, 0.05, 0.1, 0.5] Array of step sizes for the LMS and NLMS 

algorithms. 

time_start 0.55 Start time for plotting the signals. 

time_end 0.57 End time for plotting the signals. 

time_indices find(t >= time_start & t <= 

time_end) 

Indices of the time vector corresponding to the 

plotting range. 

 

Detailed Explanation of Each Parameter: 

1. Audio File Path: This is the complete 

path to the audio file chosen by the user. 

It combines the path and filename to 

access the file for reading. 

2. Fs: The sample rate of the audio file, 

given in Hertz (Hz). It represents how 

frequently samples of the audio signal 

are taken per second. Common values 

are 44100 Hz for CD-quality audio. 

3. N: The number of samples in the audio 

signal, calculated by finding the length 

of the audio data array d. It gives the 

total number of data points in the signal. 

4. t: A time vector created by dividing the 

sample indices by the sample rate Fs. 

This vector represents the time (in 

seconds) corresponding to each sample. 

5. x: The original audio signal d with 

added noise. The noise is generated 

from a Gaussian distribution with a 

standard deviation of 0.5, which 

simulates real-world noise in the audio 

signal. 

6. echo_delay: The number of samples that 

represents the delay for the echo effect, 

set to 0.1 seconds. This creates a time 

shift in the audio signal to simulate an 

echo. 

7. echo gain: The amplification factor 

applied to the echo signal. In this case, it 

is set to 0.5, meaning the echo signal is 

half as strong as the original signal. 

8. echo signal: The generated echo signal, 

which is created by shifting the original 

signal by the echo_delay and scaling it 

by the echo_gain. 

9. noise: Additional noise added to the 

signal to simulate real-world conditions 

where signals are often mixed with 

background noise. 

10. mixed_signal: The final signal that 

combines the original signal, the echo 

effect, and the additional noise. 

11. mu_values: The learning rates used in 

the LMS (Least Mean Squares) and 

NLMS (Normalized Least Mean 

Squares) algorithms. These values 

control how quickly the adaptive filters 

adjust their weights during the learning 

process. 

12. time_start: The beginning of the time 

interval used for plotting. It specifies 

where the plotting of signals should start 

in seconds. 

13. time_end: The end of the time interval 

for plotting. It defines where the plotting 

of signals should end in seconds. 

14. time_indices: The indices of the time 

vector t that fall within the specified 

time range [time_start, time_end]. These 

indices are used to extract and plot the 

relevant portion of the signals. 

These parameters and their values define 

how the audio signal is processed, 

simulated, and analyzed in the provided 

code. 



Joshua Okoekhian et.al. Design and simulation of adaptive filters in real-time environment 

                                      International Journal of Research and Review (ijrrjournal.com)  225 

Volume 11; Issue: 11; November 2024 

Results 

Explanation of Each Plot: 

 

 
Figure 2: Original signal plot 

 

1. Original Signal: This plot shows the 

audio signal with Gaussian noise added, 

representing the raw, unprocessed audio 

before any echo or noise cancellation 

techniques are applied. By visualizing 

the original signal in its noisy state, this 

plot provides a reference point to assess 

how the noise affects the signal's 

waveform. The Observation of this plot 

is crucial for understanding the baseline 

characteristics of the signal and for 

evaluating the effectiveness of any 

subsequent signal processing. 

 
Figure 3: Mixed signal plot 

 

2. Mixed Signal: This plot is the 

combination of the original audio signal 

with both the simulated echo and 

additional noise, resulting in a complex 

composite signal. The visual 

representation of this mixed signal 



Joshua Okoekhian et.al. Design and simulation of adaptive filters in real-time environment 

                                      International Journal of Research and Review (ijrrjournal.com)  226 

Volume 11; Issue: 11; November 2024 

illustrates how the echo introduces time-

delayed repetitions of the original signal, 

and how the added noise creates random 

variations. This visualization helps in 

understanding the compounded effect of 

these disturbances on the signal, 

revealing the challenges faced in 

isolating and processing the original 

audio content amidst these artifacts. 

 

 
Figure 4: Echo signal plot 

 

3. Echo Signal: The echo signal plot 

isolates the simulated echo component, 

which is created by delaying the original 

signal and applying a gain. This plot 

allows for an examination of how the 

echo appears as an added, delayed 

version of the original signal. The focus 

on the echo is to help analyze its impact 

on the overall signal, including how the 

delay and gain parameters affect the 

echo's prominence and interaction with 

the original signal. 

 

 
Figure 5: Noise signal plot 

 



Joshua Okoekhian et.al. Design and simulation of adaptive filters in real-time environment 

                                      International Journal of Research and Review (ijrrjournal.com)  227 

Volume 11; Issue: 11; November 2024 

4. Noise: This plot depicts the additional 

noise component separately, showing its 

random and unpredictable nature. This 

visual presentation of the noise 

component helps to assess its amplitude 

and distribution, which also helps in 

understanding its contribution to the 

overall mixed signal. The randomness of 

the noise can obscure the original signal, 

and this plot provides insight into how 

the noise level and characteristics 

influence the clarity and quality of the 

audio. 

 

 
Figure 6: Echo cancellation Error plot 

 

5. Echo Cancellation Errors: This plot 

illustrates the error in echo cancellation 

performance for both LMS (Least Mean 

Squares) and NLMS (Normalized Least 

Mean Squares) algorithms. It shows the 

difference between the mixed signal and 

the signal reconstructed after applying 

each algorithm. Smaller error values 

indicate that the algorithm has more 

effectively removed the echo, while 

larger errors suggest that the algorithm’s 

performance is less effective. 

Comparing these errors helps in 

evaluating and contrasting the efficacy 

of the LMS and NLMS algorithms in 

echo cancellation. 

 

 
Figure 7: Noise cancellation Error plot 

 



Joshua Okoekhian et.al. Design and simulation of adaptive filters in real-time environment 

                                      International Journal of Research and Review (ijrrjournal.com)  228 

Volume 11; Issue: 11; November 2024 

6. Noise Cancellation Errors: This plot 

displays the errors associated with noise 

cancellation for both LMS and NLMS 

algorithms. It represents the discrepancy 

between the noisy mixed signal and the 

signal obtained after applying each 

algorithm. Smaller error values signify 

that the algorithm has successfully 

reduced the noise, improving the signal's 

clarity. This plot is essential for 

comparing how effectively each 

algorithm handles noise reduction and 

for determining which approach 

provides better noise cancellation. 

 

 
Figure 8: Echo cancelled signal plot 

 

7. Echo Cancelled Signal: This plot 

showcases the signal after applying echo 

cancellation algorithms, both LMS and 

NLMS. It visually represents the success 

of each algorithm in removing the echo 

component from the mixed signal. The 

comparison of these plots helps in the 

assessment of the quality of echo 

removal and determines how closely the 

processed signal resembles the original, 

uncorrupted signal. This evaluation is 

crucial for understanding the 

effectiveness of the echo cancellation 

techniques used. 

 

 
Figure 9: Noise cancelled signal plot 

 

8. Noise Cancelled Signal: This plot 

displays the result of noise cancellation 

for both LMS and NLMS algorithms, 

showing the signal after the noise 



Joshua Okoekhian et.al. Design and simulation of adaptive filters in real-time environment 

                                      International Journal of Research and Review (ijrrjournal.com)  229 

Volume 11; Issue: 11; November 2024 

component has been processed. It 

illustrates how well each algorithm has 

succeeded in mitigating noise, 

improving the signal's overall quality. 

The close observation of these plots 

helps in the evaluation of the 

performance of each algorithm in 

reducing noise and enhancing the 

signal's clarity, providing insight into 

which method offers better noise 

reduction. 

 

Detailed Result Analysis 

The details of the observations for each set 

of mu values are described below: 

Mu = 0.01: 

This is the detailed description of each plot 

for Mu = 0.01: 

 

 
Figure 10: Plot of Original signal for mu = 0.01 

 

1. Original Signal: For Mu = 0.01, the 

original signal appears relatively clean 

with only minor noise added. This plot 

provides a clear view of the signal's 

basic characteristics before any echo or 

noise cancellation is applied, 

highlighting how the low level of added 

noise affects the signal. 

 

 
Figure 11: Plot of mixed signal for mu = 0.01 



Joshua Okoekhian et.al. Design and simulation of adaptive filters in real-time environment 

                                      International Journal of Research and Review (ijrrjournal.com)  230 

Volume 11; Issue: 11; November 2024 

2. Mixed Signal: The mixed signal plot 

reveals increased complexity due to the 

combined effects of added echo and 

noise. At this low learning rate, the echo 

and noise contribute significantly to the 

signal’s distortion, making it more 

challenging to distinguish the original 

audio content. 

 

 
Figure 12: Plot of echo signal for mu = 0.01 

 

3. Echo Signal: This plot clearly displays 

the echo as a delayed version of the 

original signal. The delay introduced in 

the echo effect is evident, showing how 

the signal is repeated with a time shift. 

This visualization helps in 

understanding how the echo component 

overlaps with the original signal. 

 

 
Figure 13: Plot of noise for mu = 0.01 

 



Joshua Okoekhian et.al. Design and simulation of adaptive filters in real-time environment 

                                      International Journal of Research and Review (ijrrjournal.com)  231 

Volume 11; Issue: 11; November 2024 

4. Noise: The noise plot shows the random 

noise component separately. It appears 

as an unpredictable and irregular signal 

that adds variability to the audio. This 

randomness in the noise illustrates its 

impact on the overall mixed signal. 

 

 
Figure 14: plot of echo cancellation errors for mu = 0.01 

 

5. Echo Cancellation Errors (LMS and 

NLMS): For Mu = 0.01, the echo 

cancellation errors decrease gradually 

over time for both LMS and NLMS 

algorithms, indicating a slow adaptation 

process. The NLMS algorithm generally 

exhibits a slightly faster decrease in 

errors due to its normalization process, 

which adjusts more dynamically to the 

signal’s variations. 

 

 
Figure 15: plot of noise cancellation errors for mu = 0.01 

 



Joshua Okoekhian et.al. Design and simulation of adaptive filters in real-time environment 

                                      International Journal of Research and Review (ijrrjournal.com)  232 

Volume 11; Issue: 11; November 2024 

6. Noise Cancellation Errors (LMS and 

NLMS): Similar to the echo 

cancellation errors, the noise 

cancellation errors also decrease slowly. 

This gradual reduction shows the slow 

convergence of the algorithms in 

adapting to the noise. Both LMS and 

NLMS algorithms demonstrate this 

gradual improvement, with NLMS 

typically performing a bit better due to 

its normalization approach. 

 

 
Figure 16: plot of echo cancelled signal for mu = 0.01 

 

7. Echo Cancelled Signal (LMS and 

NLMS): The plot of the echo-cancelled 

signal reveals that the echo is only 

partially removed by the algorithms, 

leaving some remnants visible. The low 

learning rate (Mu = 0.01) results in slow 

convergence, meaning that the 

algorithms are still in the process of 

adjusting to fully cancel out the echo. 

 

 
Figure 17: Plot of noise cancelled signal for mu = 0.01 

 

8. Noise Cancelled Signal (LMS and 

NLMS): Similarly, the noise-cancelled 

signal plot shows partial noise reduction. 

The remnants of noise indicate that the 



Joshua Okoekhian et.al. Design and simulation of adaptive filters in real-time environment 

                                      International Journal of Research and Review (ijrrjournal.com)  233 

Volume 11; Issue: 11; November 2024 

low learning rate has led to slow 

adaptation and incomplete removal of 

noise. Both LMS and NLMS show 

partial success, with NLMS generally 

performing better due to its 

normalization feature. 

This detailed breakdown illustrates how the 

low learning rate impacts the performance 

of echo and noise cancellation algorithms, 

highlighting the challenges and partial 

successes observed in the simulation. 

Mu = 0.05: 

This is the detailed description of each plot 

for Mu = 0.05: 

 

 
Figure 18: Plot of original signal for mu = 0.05 

 

1. Original Signal: The plot of the original 

signal for Mu = 0.05 is consistent with 

the plots from previous learning rates. It 

displays the audio signal with minor 

added noise, providing a baseline 

reference for comparing the effects of 

different learning rates on signal 

processing. 

 

 
Figure 19: Plot of mixed signal for mu = 0.05 

 



Joshua Okoekhian et.al. Design and simulation of adaptive filters in real-time environment 

                                      International Journal of Research and Review (ijrrjournal.com)  234 

Volume 11; Issue: 11; November 2024 

2. Mixed Signal: The mixed signal plot 

remains the same as in previous 

scenarios. It illustrates the combined 

effect of the original signal, echo, and 

added noise, setting the stage for 

evaluating the performance of the 

cancellation algorithms. 

 

 
Figure 20: Plot of echo signal for mu = 0.05 

 

3. Echo Signal: The echo signal plot is 

identical to the previous plots, showing 

the delayed version of the original 

signal. This plot helps in understanding 

the impact of the echo on the overall 

signal. 

 

 
Figure 21: Plot of noise for mu = 0.05 

 



Joshua Okoekhian et.al. Design and simulation of adaptive filters in real-time environment 

                                      International Journal of Research and Review (ijrrjournal.com)  235 

Volume 11; Issue: 11; November 2024 

4. Noise: The noise plot continues to 

represent the added random noise 

component. It shows how the noise 

affects the signal, maintaining 

consistency with the previous 

descriptions. 

 

 
Figure 22: Plot of echo cancellation errors for mu = 0.05 

 

5. Echo Cancellation Errors (LMS and 

NLMS): For Mu = 0.05, the echo 

cancellation errors decrease faster than 

they did with Mu = 0.01, indicating that 

both LMS and NLMS algorithms adapt 

more quickly to the echo. The NLMS 

algorithm demonstrates a quicker 

convergence compared to LMS, thanks 

to its normalization mechanism which 

adjusts more dynamically to changes in 

the signal. 

 

DISCUSSION 

To perform a detailed comparative analysis 

of the results based on the plots generated 

by the provided code for different mu values 

(0.01, 0.05, 0.1, and 0.5), there is need to 

examine how each value affects the 

performance of the LMS and NLMS 

algorithms in terms of echo and noise 

cancellation. 

The findings revealed that the original 

signal was contaminated with both noise 

and echo to create a mixed signal, 

effectively simulating real-world scenarios 

where audio signals often suffer from such 

interferences. 

Examining the effect of different mu values, 

it was found that for mu = 0.01, both LMS 

and NLMS algorithms exhibited a slow 

convergence rate, with high initial error 

signals for both echo and noise cancellation 

that decreased gradually. The echo and 

noise cancelled signals showed some 

improvement, but residual noise and echo 

were still present. With mu = 0.05, the 

convergence rate improved compared to mu 

= 0.01, and error signals decreased more 

rapidly, indicating more effective 

cancellation. The resulting echo and noise 

cancelled signals were cleaner, with less 

residual noise and echo. At mu = 0.1, both 

LMS and NLMS algorithms demonstrated 

fast convergence, with error signals 

dropping significantly, showing efficient 

cancellation. The echo and noise cancelled 

signals were notably cleaner, with minimal 

residual interference. For mu = 0.5, the 

convergence was very fast, but the risk of 

instability increased, especially for the LMS 

algorithm. However, the NLMS algorithm 

handled the high mu value better, 

maintaining stability and effectively 

cancelling echo and noise. The resulting 



Joshua Okoekhian et.al. Design and simulation of adaptive filters in real-time environment 

                                      International Journal of Research and Review (ijrrjournal.com)  236 

Volume 11; Issue: 11; November 2024 

echo and noise cancelled signals were very 

clean, but the LMS algorithm showed 

potential instability artifacts. 

Comparing the performance of the 

algorithms, it was observed that the NLMS 

algorithm consistently outperformed the 

LMS algorithm across all mu values. The 

normalization step in NLMS allowed it to 

adapt more effectively to variations in signal 

power, leading to better stability and faster 

convergence. At higher mu values, NLMS 

maintained stability better than LMS, 

resulting in cleaner cancellation. 

 

CONCLUSION 

Based on the simulation results, the 

following conclusions can be drawn: 

1. Optimal Mu Value: A mu value 

between 0.05 and 0.1 strikes a good 

balance between convergence speed and 

stability for both LMS and NLMS 

algorithms. Higher mu values (e.g., 0.5) 

can lead to faster convergence but risk 

instability, particularly for the LMS 

algorithm. 

2. Algorithm Preference: The NLMS 

algorithm is generally preferred over the 

LMS algorithm due to its ability to 

handle signal power variations more 

effectively and maintain stability at 

higher mu values. NLMS provided more 

consistent and cleaner cancellation of 

both echo and noise across different mu 

values. 

3. Practical Implications: For real-world 

applications where both echo and noise 

need to be cancelled from audio signals, 

the NLMS algorithm with a mu value 

around 0.05 to 0.1 is recommended. 

Proper tuning of mu is crucial to achieve 

the desired balance between 

convergence speed and stability, 

ensuring effective cancellation without 

introducing instability. 

 

RECOMMENDATIONS 

Recommendations for enhancing echo and 

noise cancellation in audio processing 

applications are as follows: 

1. Algorithm Selection: Utilize the NLMS 

algorithm for most practical scenarios 

involving echo and noise cancellation 

due to its superior performance and 

stability. 

2. Mu Value Tuning: Adjust the mu value 

carefully based on the specific 

characteristics of the audio signal and 

the level of interference. Generally, a 

mu value in the range of 0.05 to 0.1 is 

effective. 

3. Further Research: Explore adaptive 

methods for dynamically adjusting the 

mu value in real-time to optimize the 

performance of LMS and NLMS 

algorithms under varying signal 

conditions. Investigate hybrid 

approaches that combine the strengths of 

both LMS and NLMS algorithms for 

improved robustness and performance. 

4. Application to Real-World Signals: 

Evaluate the algorithms on a broader 

range of real-world audio signals with 

different types and levels of interference 

to validate their effectiveness and refine 

the parameter tuning process. 

These recommendations if followed will 

help in the effectiveness of echo and noise 

cancellation in audio processing 

applications, resulting in clearer and more 

intelligible audio signals. 

 

Declaration by Author 

Acknowledge: The author extends his 

heartfelt appreciation to the Administration 

of the National Institute of the National 

Institute of Construction Technology and 

Management (NICTM), Uromi and the 

Tertiary Education Trust Fund (TetFund). 

Source of Funding: Tertiary Education 

Trust Fund (TetFund) 

Conflict of Interest: Nil 

 
REFERENCES 

1. Aboy, M., Márquez, O. W., McNames, J., 

Hornero, R., Trong, T., & Goldstein, B. 

(2005). Adaptive modeling and spectral 

estimation of nonstationary biomedical 

signals based on Kalman filtering. IEEE 

transactions on biomedical engineering, 

52(8), 1485-1489. 



Joshua Okoekhian et.al. Design and simulation of adaptive filters in real-time environment 

                                      International Journal of Research and Review (ijrrjournal.com)  237 

Volume 11; Issue: 11; November 2024 

2. Ahirwal, M. K., Kumar, A., & Singh, G. K. 

(2021). Fundamentals of Adaptive Filters. 

In Computational Intelligence and 

Biomedical Signal Processing: An 

Interdisciplinary, Easy and Practical 

Approach (pp. 21-50). Cham: Springer 

International Publishing. 

3. Almagbile, A., Wang, J., & Ding, W. 

(2010). Evaluating the performances of 

adaptive Kalman filter methods in GPS/INS 

integration. Journal of Global Positioning 

Systems, 9(1), 33-40. 

4. Apolinário Jr, J. A., & Netto, S. L. (2008). 

Introduction to adaptive filters. In QRD-

RLS Adaptive Filtering (pp. 1-27). Boston, 

MA: Springer US. 

5. Avalos, J. G., Sanchez, J. C., & Velazquez, 

J. (2011). Applications of adaptive filtering. 

Adaptive Filtering Applications, 1, 3-20. 

6. Benesty, J., Cohen, I., & Chen, J. (2017). 

Fundamentals of signal enhancement and 

array signal processing. John Wiley & Sons. 

7. Bouaafia, S., Messaoud, S., Khemiri, R., & 

Sayadi, F. E. (2022, May). An FPGA-SoC 

based Hardware Acceleration of 

Convolutional Neural Networks. In 2022 

IEEE 9th International Conference on 

Sciences of Electronics, Technologies of 

Information and Telecommunications 

(SETIT) (pp. 537-542). IEEE. 

8. Cao, W., & Zhang, Q. (Eds.). (2021). 

Adaptive Filtering - Recent Advances and 

Practical Implementation. IntechOpen. doi: 

10.5772/intechopen.91562 

9. Casebeer, J., Bryan, N. J., & Smaragdis, P. 

(2022). Meta-af: Meta-learning for adaptive 

filters. IEEE/ACM Transactions on Audio, 

Speech, and Language Processing, 31, 355-

370. 

10. Comminiello, D., Nezamdoust, A., 

Scardapane, S., Scarpiniti, M., Hussain, A., 

& Uncini, A. (2022). A new class of 

efficient adaptive filters for online nonlinear 

modeling. IEEE Transactions on Systems, 

Man, and Cybernetics: Systems, 53(3), 

1384-1396. 

11. de Campos, M. L., Werner, S., & Apolinário 

Jr, J. A. (2004). Constrained adaptive filters. 

In Adaptive Antenna Arrays: Trends and 

Applications (pp. 46-64). Berlin, 

Heidelberg: Springer Berlin Heidelberg. 

12. Dewasthale, M. M., Kharadkar, R. D., & 

Bari, M. (2015, December). Comparative 

performance analysis and hardware 

implementation of adaptive  filter 

algorithms for acoustic noise cancellation. 

In 2015 International Conference on 

Information Processing (ICIP) (pp. 124-

129). IEEE. 

13. Diniz, P. S. (2019). Adaptive Filtering: 

Algorithms and Practical Implementation. 

Springer Nature. 

14. Dogancay, K. (2008, May). Performance 

benefits of resource-constrained adaptive 

filtering. In 2008 3rd International 

Symposium on Wireless Pervasive 

Computing (pp. 266-269). IEEE. 

15. Esposito, D., De Caro, D., Di Meo, G., 

Napoli, E., & Strollo, A. G. (2019). Low-

power hardware implementation of least-

mean-square adaptive filters using 

approximate arithmetic. Circuits, Systems, 

and Signal Processing, 38(12), 5606-5622. 

16. Fauzi, H., & Batool, U. (2019). A three-bar 

truss design using single-solution simulated 

Kalman filter optimizer. Mekatronika, 1(2), 

98-102. 

17. Freire, P. J., Srivallapanondh, S., Napoli, A., 

Prilepsky, J. E., & Turitsyn, S. K. (2022). 

Computational complexity evaluation of 

neural network applications in signal 

processing. arXiv preprint 

arXiv:2206.12191. 

18. Fuhg, J. N., Fau, A., & Nackenhorst, U. 

(2021). State-of-the-art and comparative 

review of adaptive sampling methods for 

kriging. Archives of Computational 

Methods in Engineering, 28, 2689-2747. 

19. Haykin, S. (2017). Adaptive systems for 

signal process. Advanced Signal Processing: 

Theory and Implementation for Sonar, 

Radar, and Non-Invasive Medical 

Diagnostic Systems, 25. 

20. Hoang, H. S., & Baraille, R. (2017). A 

comparison study on performance of an 

adaptive filter with other estimation 

methods for state estimation in 

highdimensional system. Advances in 

Statistical Methodologies and their 

Application to Real Problems. Rijeka, 

Croatia: IntechOpen, 29-52. 

21. Huq, K. M. S., Bergano, M., Gameiro, A., 

& Arefin, M. T. (2009). Channel 

Equalization in Digital Transmission. 

IJCSIS, 89. 

22. Jiang, C., Zhang, S., Li, H., & Li, Z. (2021). 

Performance evaluation of the filters with 

adaptive factor and fading factor for 

GNSS/INS integrated systems. GPS 

Solutions, 25, 1-11. 



Joshua Okoekhian et.al. Design and simulation of adaptive filters in real-time environment 

                                      International Journal of Research and Review (ijrrjournal.com)  238 

Volume 11; Issue: 11; November 2024 

23. Kalita, D., & Lyakhov, P. (2022). Moving 

Object Detection Based on a Combination 

of Kalman Filter and Median Filtering. Big 

Data and Cognitive Computing, 6(4), 142. 

24. Katz, D. (2021). Real-time Audio 

Processing with Optimized Signal Path. 

ATZelectronics worldwide, 16(10), 42-45. 

25. Liu, X., Wang, C., & Fan, X. (2023, 

August). A Real-Time Parallel Information 

Processing Method for Signal Sorting. In 

International Conference on Database and 

Expert Systems Applications (pp. 298-303). 

Cham: Springer Nature Switzerland. 

 

 
How to cite this article: Joshua Okoekhian, 

Mathurine Guiawa, Ikenna Onyegbadue. Design 

and simulation of adaptive filters in real-time 

environment. International Journal of Research 

and Review. 2024; 11(11): 215-238. DOI:  

https://doi.org/10.52403/ijrr.20241118 

 

 

****** 


