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ABSTRACT 

 

Neuropathic pain is a debilitating symptom 

in leprosy patients that significantly impacts 

their quality of life. While the mechanisms 

underlying this pain remain unclear, recent 

research suggests a potential role for C-C 

motif chemokine ligand 2 (CCL-2), a 

chemokine involved in inflammatory 

processes. This literature review explores 

the association between CCL-2 levels and 

neuropathic pain in leprosy patients. We 

discuss the current understanding of CCL-

2's role in nerve damage and inflammation, 

as well as its potential as a biomarker for 

predicting and monitoring neuropathic pain 

in leprosy. Understanding the role of CCL-2 

in leprosy-associated neuropathic pain may 

lead to the development of novel therapeutic 

strategies and improve the management of 

this chronic condition. 
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INTRODUCTION 

Neuropathic pain is a complex and chronic 

pain state that arises from injury or disease 

affecting the somatosensory system. It is 

characterized by symptoms such as 

allodynia (pain from stimuli that do not 

normally provoke pain) and hyperalgesia 

(an increased response to painful stimuli)1. 

This type of pain is notoriously difficult to 

treat, often requiring a multifaceted 

approach that includes pharmacological and 

non-pharmacological interventions2. Among 

the various mediators involved in the 

pathophysiology of neuropathic pain, 

chemokines, particularly the C-C motif 

chemokine ligand 2 (CCL-2), also known as 

monocyte chemoattractant protein-1 (MCP-

1), have garnered significant attention due 

to their role in neuroinflammation and pain 

modulation3,4. 

CCL-2 is a member of the CCL family of 

chemokines that primarily functions to 

recruit monocytes and other immune cells to 

sites of inflammation. It is produced by 

various cell types, including neurons, 

astrocytes, and microglia, in response to 

inflammatory stimuli5. In the context of 

neuropathic pain, CCL-2 has been 

implicated in the activation of glial cells and 

the subsequent release of pro-inflammatory 

cytokines, which can exacerbate pain 

signaling pathways6. The interaction of 

CCL-2 with its receptor, CCR2, has been 

shown to contribute to the development and 

maintenance of neuropathic pain states, 

highlighting its potential as a therapeutic 

target7. 

Leprosy, caused by the bacterium 

Mycobacterium leprae, is a chronic 

infectious disease that primarily affects the 

skin and peripheral nerves. One of the most 

debilitating consequences of leprosy is the 

development of neuropathic pain, which can 

occur even after successful treatment with 

multidrug therapy (MDT)4,8. Neuropathic 

pain in leprosy is often attributed to the 

immune-mediated damage to peripheral 
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nerves, leading to sensory disturbances and 

chronic pain syndrome9,10. Studies have 

shown that a significant proportion of 

leprosy patients experience neuropathic 

pain, which can persist long after the 

infection has been treated, indicating a 

complex interplay between the disease, 

immune response, and pain mechanisms11,12.  

The pathophysiology of neuropathic pain in 

leprosy is complex and involves the 

activation of glial cells, particularly 

microglia in the spinal cord. These cells 

respond to injury and inflammation by 

releasing pro-inflammatory cytokines and 

chemokines, which can sensitize neurons 

and contribute to the development of pain8. 

CCL-2 is particularly important in this 

context, as it not only attracts monocytes to 

the site of injury but also promotes the 

activation of microglia, creating a feedback 

loop that perpetuates inflammation and 

pain1. The role of CCL-2 in leprosy-related 

neuropathic pain is particularly noteworthy. 

In leprosy, the presence of CCL-2 has been 

linked to the severity of neuropathic pain 

experienced by patients. Elevated levels of 

CCL-2 in the serum and cerebrospinal fluid 

have been observed in individuals with 

leprosy-associated neuropathy, suggesting 

that this chemokine may serve as a 

biomarker for pain severity and a potential 

therapeutic target13. Furthermore, the 

activation of CCL-2 signaling pathways in 

the dorsal root ganglia and spinal cord has 

been linked to the onset of neuropathic pain 

following nerve injury, underscoring the 

potential for CCL-2 to mediate pain in 

leprosy14.  

The modulation of CCL-2 signaling 

pathways has been proposed as a strategy to 

alleviate neuropathic pain by reducing the 

recruitment of inflammatory cells and the 

subsequent activation of pain pathways13. 

Understanding the mechanisms by which 

CCL-2 contributes to neuropathic pain in 

leprosy could pave the way for novel 

therapeutic strategies aimed at alleviating 

pain and improving the quality of life for 

affected individuals.  

 

LITERATURE REVIEW  

LEPROSY 

Leprosy, also known as Hansen's disease, is 

a chronic infectious disease caused by the 

bacterium Mycobacterium leprae. This 

disease primarily affects the skin, peripheral 

nerves, and mucous membranes, leading to 

significant morbidity and disability if left 

untreated. Globally, leprosy remains a 

public health concern, particularly in 

developing countries, and Indonesia ranks 

third in the world for the highest number of 

leprosy cases, following India and Brazil. In 

2019, Indonesia reported 17,439 new cases 

of leprosy, highlighting the ongoing 

challenge of managing this disease within 

its borders15.The epidemiology of leprosy in 

Indonesia is characterized by a high 

prevalence in certain regions, particularly in 

East Java and Papua. The disease is often 

associated with socio-economic factors, 

including poverty, limited access to 

healthcare, and inadequate public health 

education. These factors contribute to the 

persistence of leprosy in endemic areas, 

where the stigma surrounding the disease 

further complicates efforts for early 

diagnosis and treatment16,17. The World 

Health Organization (WHO) has 

implemented various strategies to combat 

leprosy, including the introduction of multi-

drug therapy (MDT), which has proven 

effective in curing the disease. However, the 

challenge remains in preventing 

transmission and addressing the social 

stigma associated with leprosy 18. 

In Indonesia, the burden of leprosy is not 

only medical but also social, as individuals 

affected by the disease often face 

discrimination and marginalization. This 

stigma can lead to delayed diagnosis and 

treatment, exacerbating the physical and 

psychological impacts of the disease. 

Studies have shown that many leprosy 

patients experience significant social 

isolation and mental health issues due to 

societal perceptions of leprosy19. Efforts to 

control leprosy in Indonesia have included 

community-based interventions aimed at 

increasing awareness and understanding of 
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the disease. Programs such as the Leprosy 

Post Exposure Prophylaxis (LPEP) have 

been implemented to provide preventive 

treatment to individuals who have been in 

close contact with leprosy patient20,21 

The clinical manifestations of leprosy can 

vary widely, with some patients presenting 

with atypical symptoms that complicate 

diagnosis. This variability underscores the 

importance of training healthcare 

professionals to recognize the diverse 

presentations of leprosy and to ensure 

timely intervention15. Moreover, the 

integration of leprosy services into general 

healthcare systems is essential for 

improving case detection and reducing the 

stigma associated with the disease16.  

 

C-C MOTIF CHEMOKINE LIGAND 2 

(CCL2) 

CCL-2 is primarily produced by various cell 

types, including monocytes, macrophages, 

and fibroblasts, in response to inflammatory 

stimuli. Its primary function is to attract 

monocytes to areas of tissue damage, 

thereby facilitating the inflammatory 

response necessary for tissue repair and 

homeostasis22. The significance of CCL-2 

extends beyond mere chemotaxis; it is also 

involved in various pathological conditions, 

including cardiovascular diseases, 

neurodegenerative disorders, and cancer. 

The expression of CCL-2 is tightly 

regulated by several pro-inflammatory 

cytokines, such as interleukin-1β (IL-1β), 

IL-6, and tumor necrosis factor-alpha (TNF-

α)23. This regulation cannot fully explain the 

complexity of the inflammatory response, 

where CCL-2 acts as a mediator that not 

only facilitates the migration of immune 

cells but also amplifies the inflammatory 

cascade. CCL-2 operates primarily at the 

sites of inflammation, where it orchestrates 

the migration of immune cells to combat 

pathogens and facilitate tissue repair. In the 

context of sepsis, CCL-2 has been shown to 

play a critical role in the pathogenesis of 

acute kidney injury by modulating the 

inflammatory response through the 

regulation of microRNAs23.  

The binding of CCL-2 to its receptor, 

CCR2, is essential for the recruitment of 

monocytes and macrophages to inflamed 

tissues, thereby perpetuating the 

inflammatory process24.In addition to its 

role in inflammation, CCL-2 has been 

implicated in various diseases, including 

cancer. The involvement of CCL-2 in 

cancer highlights its dual role as both a 

mediator of inflammation and a facilitator of 

tumorigenesis. The dysregulation of CCL-2 

has been associated with neurodegenerative 

diseases, where it may contribute to 

neuroinflammation and neuronal damage25. 

Furthermore, CCL-2 levels can serve as 

prognostic indicators in various conditions, 

including traumatic brain injury, where 

sustained elevated levels in cerebrospinal 

fluid correlate with neuroinflammation and 

recovery outcomes26. 

The expression levels of CCL-2 are known 

to fluctuate significantly in response to 

various physiological and pathological 

stimuli, including infections, tissue injury, 

and chronic inflammatory diseases. This 

fluctuation is influenced by factors such as 

oxidative stress, cytokines, and growth 

factors, which can induce CCL-2 expression 

in various cell types, including 

macrophages, endothelial cells, and 

fibroblasts27. The regulation of CCL-2 

expression is complex and can be influenced 

by various factors, including age, sex, and 

underlying health conditions. Studies have 

shown that CCL-2 levels decrease with age, 

which may impact the immune response in 

older adults28. Additionally, the presence of 

certain genetic polymorphisms can affect 

CCL-2 expression and its association with 

diseases such as latent tuberculosis 

infection28. This highlights the importance 

of understanding the genetic and 

environmental factors that contribute to the 

regulation of CCL-2 levels and their 

implications for health and disease.  

 

PATHOMECHANISM OF 

NEUROPATHIC PAIN IN LEPROSY 

In leprosy, neuropathic pain can manifest 

due to peripheral nerve damage, which is a 
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hallmark of the disease. The mechanisms 

underlying neuropathic pain in leprosy 

involve a combination of inflammatory 

processes, neurogenic inflammation, and 

alterations in pain signaling pathways, with 

chemokines such as CCL-2 playing a 

significant role in these processes. Leprosy 

primarily affects peripheral nerves, leading 

to a range of neurological symptoms, 

including sensory loss and neuropathic pain. 

The pathophysiology of neuropathic pain in 

leprosy is characterized by the degeneration 

of nerve fibers, which can result from direct 

bacterial invasion or immune-mediated 

damage. This damage triggers a cascade of 

inflammatory responses, leading to the 

release of various pro-inflammatory 

mediators, including cytokines and 

chemokines, which further sensitize 

nociceptive pathways. CCL-2 is one of the 

key chemokines involved in this 

inflammatory response. It is produced by 

various cell types, including macrophages, 

endothelial cells, and neurons, and plays a 

role in recruiting monocytes to sites of 

inflammation, thereby amplifying the 

inflammatory response23,29,30. 

The role of CCL-2 in neuropathic pain is 

particularly significant due to its ability to 

modulate neuronal excitability and promote 

central sensitization. Central sensitization 

refers to the increased responsiveness of 

nociceptive neurons in the central nervous 

system to their normal input, which can lead 

to heightened pain perception. Studies have 

shown that CCL-2 can enhance the 

excitability of dorsal horn neurons in the 

spinal cord, contributing to the development 

and maintenance of neuropathic pain29,30. 

This sensitization is mediated through the 

activation of CCL-2 receptors, primarily 

CCR-2, which are expressed on various 

neuronal and glial cells in the spinal 

cord30,31. 

In leprosy, the presence of CCL-2 in the 

cerebrospinal fluid and peripheral tissues 

has been associated with the severity of 

neuropathic pain. Elevated levels of CCL-2 

correlate with increased monocyte 

infiltration and the subsequent release of 

additional inflammatory mediators, creating 

a feedback loop that perpetuates pain 

signaling 29,30. The inflammatory milieu in 

leprosy not only affects peripheral nerves 

but also alters central pain processing 

pathways, leading to chronic pain states that 

can be resistant to conventional analgesics. 

Moreover, the interaction between CCL-2 

and other inflammatory mediators further 

complicates the pain response in leprosy. 

For instance, CCL-2 can activate the p38 

mitogen-activated protein kinase (MAPK) 

pathway in microglia, leading to the 

production of pro-inflammatory cytokines 

such as IL-1β and TNF-α can exacerbate the 

inflammatory response, leading to increased 

pain sensitivity29,31. CCL-2 also has been 

implicated in the upregulation of matrix 

metalloproteinases (MMPs), which are 

enzymes that degrade extracellular matrix 

components and can facilitate neuronal 

injury and pain sensitization 29,31.  

In addition to its role in pain signaling, 

CCL-2 is also implicated in the repair 

processes following nerve injury. While this 

may seem contradictory, the recruitment of 

monocytes and macrophages to the site of 

injury is essential for tissue repair and 

regeneration. However, in the context of 

leprosy, the persistent activation of CCL-2 

signaling can lead to chronic inflammation 

and neuropathic pain rather than effective 

healing 23,29,30. This dual role of CCL-2 

underscores the complexity of inflammatory 

responses in neuropathic pain conditions. 

CCL2 also influences neuronal excitability 

and synaptic plasticity, which are critical for 

the development of chronic pain states. 

Inhibiting CCL-2 or blocking its receptor 

CCR-2 has shown promise in preclinical 

models of neuropathic pain, suggesting that 

such strategies could be beneficial in 

alleviating pain in leprosy patients 30,31. 

Additionally, the use of anti-inflammatory 

agents that can reduce the levels of CCL-2 

and other inflammatory mediators may 

provide a dual benefit by addressing both 

the pain and the underlying inflammation.  
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RELIABILITY AND CHALLENGES 

OF CCL-2 AS A BIOMARKER 

CCL-2 has emerged as a reliable biomarker 

for neuropathic pain due to its significant 

role in the inflammatory processes 

associated with nerve injury and pain 

modulation. The association of CCL-2 with 

neuropathic pain is further supported by 

studies demonstrating its elevated levels in 

various pain models. For instance, research 

has shown that CCL-2 levels increase 

significantly following peripheral nerve 

injury, correlating with the development of 

hyperalgesia and allodynia, which are 

hallmark features of neuropathic pain9,33. 

CCL-2 levels have been shown to correlate 

with pain severity and functional outcomes 

in spinal cord injury and diabetnic 

neuropathy.The reliability of CCL-2 as a 

biomarker for neuropathic pain is also 

supported by its predictive value in clinical 

settings. Elevated serum levels of CCL-2 

have been associated with poor prognosis in 

patients suffering from various neuropathic 

pain conditions, suggesting its potential 

utility in monitoring disease progression and 

treatment response33-35. The understanding 

of CCL-2's role in neuropathic pain is 

further elucidated by its interactions with 

other signaling pathways. For instance, 

CCL-2 has been shown to interact with the 

P2X4 receptor on microglia, which is 

essential for the development of neuropathic 

pain following nerve injury9. This highlights 

the multifaceted nature of CCL-2's 

involvement in pain mechanisms, 

reinforcing its status as a reliable biomarker 

for neuropathic pain. 

CCL-2 presents as a promising biomarker 

for neuropathic pain, however, there are 

notable challenges associated with its use. 

One major concern is the lack of specificity; 

elevated CCL-2 levels can also be observed 

in other inflammatory conditions, which 

may lead to misinterpretation of its role in 

neuropathic pain32. Additionally, the 

dynamic nature of CCL-2 expression in 

response to various stimuli complicates its 

utility as a reliable biomarker. For instance, 

fluctuations in CCL-2 levels may occur due 

to factors unrelated to neuropathic pain, 

such as concurrent infections or other 

inflammatory diseases32. Another significant 

limitation is the variability in individual 

responses to CCL-2 modulation. Genetic 

and environmental factors can influence the 

expression and activity of CCL-2, leading to 

heterogeneous responses among patients32. 

This variability can complicate the 

interpretation of CCL-2 levels as a 

biomarker for neuropathic pain, as different 

individuals may exhibit different pain 

profiles despite similar CCL-2 levels. 

Therefore, CCL-2 can be used as a reliable 

neuropathic pain biomarker if we can elude 

the pittfalls for patient selections.  

 

THERAPEUTIC STRATEGIES 

TARGETING CCL-2 

Recent therapeutic strategies targeting CCL-

2 have shown promise in preclinical studies. 

For example, the use of CCL-2 antagonists 

or neutralizing antibodies has been 

demonstrated to reduce pain behaviors in 

animal models of neuropathic pain36. These 

approaches aim to disrupt the recruitment of 

inflammatory cells to the site of nerve 

injury, thereby mitigating the inflammatory 

response and its associated pain. 

Furthermore, the modulation of CCL-2 

signaling pathways may enhance the 

efficacy of existing pain management 

strategies, such as opioids and non-steroidal 

anti-inflammatory drugs (NSAIDs), by 

addressing the underlying inflammatory 

processes37. In addition to pharmacological 

interventions, non-pharmacological 

approaches such as physical therapy and 

exercise have been shown to influence 

CCL-2 levels and microglial activation. 

Exercise can reduce the expression of CCL-

2 and other inflammatory markers, thereby 

contributing to pain relief in neuropathic 

pain models38. Despite the promising 

findings regarding CCL-2 in neuropathic 

pain, several challenges remain. The 

complexity of the signaling pathways 

involved and the potential for off-target 

effects of CCL-2 inhibitors necessitate 

further investigation. Additionally, the 
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translation of preclinical findings to clinical 

practice requires rigorous clinical trials to 

establish the safety and efficacy of CCL-2-

targeted therapies39.  

 

CONCLUSION 

CCL-2 serves as a reliable biomarker for 

neuropathic pain in Leprosy due to its 

significant role in the inflammatory 

response, and its involvement in 

neuroplastic changes associated with 

chronic pain. However, there are some 

challenges and major concerns to be taken 

into consideration to translate the use of 

CCL-2 in clinical settings. CCL-2 also has 

its potential as a target for therapeutic 

intervention and a valuable tool for 

monitoring pain progression in clinical 

settings. 
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