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ABSTRACT 

 

Soil fauna, ranging from micro to macrofauna, 

are vital for nutrient cycling, soil structure, and 

ecosystem productivity. The relationship 

between soil quality parameters and soil fauna 

is a complex one, with each influencing the 

other's abundance, diversity, and ecological 

functions. This review brings together current 

studies on how soil quality parameters interact 

with soil fauna, with a strong emphasis on the 

implications for ecosystem processes and 

sustainable soil nutrient management. We 

specifically highlight the impact of pH, salinity 

(Electrical conductivity), dissolved oxygen 

(DO), Dissolved organic matter (DOM), and 

nutrient concentration (soil organic carbon, 

nitrogen, phosphorus) on soil fauna. The 

integration of soil fauna considerations into 

soil health assessments is not just beneficial, 

but a critical step towards improving 

ecosystem resilience and informing 

conservation strategies. This comprehensive 

approach enhances our understanding of soil 

organism interactions and promotes 

sustainable soil management practices.  
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INTRODUCTION 

Soil ecosystems are complex and dynamic 

systems that support various species known as 

soil fauna. Soil fauna comprise 23% of known 

animal species (Kudureti et al., 2023).  These 

species include microfauna (protozoa, rotifers, 

tardigrades, and nematodes having body sizes 

of 1-2 µm for microflagellates), mesofauna 

(Collembola, dipluran, symphylan, 

enchytraeid range in size >40microns), and 

macrofauna (Isopoda, Mollusca, oligochaete 

and vertebrates: most visible soil faunas) 

(Decaëns, 2010; Swift et al., 1979). The 

diverse body sizes of soil fauna significantly 

impact multiple spatial scales. Lavelle et al. 

(1995) and Wardle, 2002 offer three levels of 
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participation. Ecosystem engineers: 

Earthworms, termites, and ants alter soil 

structure, affecting nutrients and energy flow 

(Samson et al., 1996). Microarthropods: 

fragment decomposing litter and improve its 

availability to microbes. Micro-food webs 

include microbial groups and their direct 

predators (nematodes and protozoans) (Lavelle 

et al., 1995; Wardle & Van der Putten, 2002).  

The soil's ability to sustain the productivity, 

diversity, and environmental services of 

terrestrial ecosystems” is known as soil health 

(Nations, 2020). Its irreplaceable significance 

is highlighted by supporting vital nutrients like 

nitrogen, phosphate, and potassium 

(Shrivastav et al., 2020) and controlling 

moisture levels critical for plant hydration 

(Bassiouni et al., 2023). Soil resilience and 

agricultural system sustainability are 

guaranteed by its ability to store carbon 

dioxide, nourish plant roots, and reduce 

erosion (Freschet & Roumet, 2017; Chadwick 

et al., 1994). Soil is an agricultural foundation 

supporting a diverse microbial community to 

improve fertility, crop growth, and ecological 

stability with shelter, water, and nutrients 

(Parikh & James, 2012). For Soil fauna, the 

physical makeup of soil offers cover and safety, 

enabling them to burrow, nest, and flourish 

inside its layers (Coleman et al., 2024). In 

addition, the organic materials in soil promote 

the growth, reproduction, and population 

dynamics of fauna species by acting as their 

primary food supply. Soil quality, moisture 

content, pH levels, and nutrient availability 

direct their abundance, diversity, and activity. 

This emphasizes the vital importance of 

healthy soil in maintaining soil fauna groups 

and their ecological roles. 

Soil quality metrics include a wide range of 

physical and chemical characteristics of the 

condition and health of the soil. These physical 

and chemical factors include temperature, pH, 

electrical conductivity (EC), dissolved oxygen 

(DO), nitrogen (N) concentration, and 

dissolved organic matter (DOM) concentration, 

among others (Maurya et al., 2020). These 

factors can significantly impact soil biological 

communities (soil fauna), affecting their 

abundance, diversity, activity, and geographic 

distribution across soil profiles. According to 

studies, soil temperature significantly impacts 

the dynamics of soil fauna groups (Kudureti et 

al., 2023). Temperature affects soil organisms' 

metabolic rates and reproductive activities 

(Snyder & Callaham, 2019). Warmer 

temperatures, for example, can accelerate 

decomposition rates while stressing some soil 

fauna species, influencing population 

dynamics and community structure. Soil pH, 

another essential parameter, impacts soil fauna 

diversity and function (Han et al., 2021). 

Acidic, alkaline soils can change the 

availability of nutrients and the solubility of 

hazardous chemicals, affecting soil organisms 

differently depending on their tolerance range 

(Duddigan et al., 2021). Soil pH gradient 

within ecosystems can create microhabitat that 

benefits some soil fauna species while taxing 

others, impacting biodiversity patterns (Zhao 

et al., 2018). Electrical conductivity (EC) 

reflects the soil's salinity, which can indirectly 

impact its fauna groups (Educators, 2014; Haj-

Amor et al., 2022). Salinity gradients in soil 

profiles can induce niche differentiation 

among soil fauna species, resulting in spatial 

changes in community composition and 

diversity (H. Chen et al., 2022). Dissolved 

oxygen (DO) is essential for the soil fauna's 

respiration and activity. Oxygen availability in 

soil pores determines the distribution and 

behavior of aerobic and anaerobic soil 

organisms (Sharma & Kumar, 2023). Changes 

in soil moisture and aeration conditions can 

vary DO concentrations, influencing soil fauna 

populations and their involvement in nutrient 

cycling and organic matter decomposition 

(Neira et al., 2015). Dissolved organic matter 

(DOM) quality, as determined by chemical 

composition and microbial digestion, 

influences soil fauna diversity and trophic 

dynamics (Bolan et al., 2011). Changes in 
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DOM inputs, such as plant litter or organic 

supplements, might affect soil fauna activity 

and community structure (Heděnec et al., 

2022). Soil organic carbon (SOC) is an energy 

source for microbes and soil microbial biomass. 

SMB is correlated with SOC  (Bai & Cotrufo, 

2022). Nitrogen (N) content in soil influences 

fauna communities through its effect on plant 

productivity, litter quality, and nutrient 

availability (Barrios, 2007). Soil fauna, 

particularly detritivores and decomposers, play 

a critical role in nitrogen transformation and 

recycling in the ecosystem (Betancur-Corredor 

et al., 2023). Phosphorus availability indirectly 

impacts soil fauna communities by changing 

plant-soil interaction and nutrient dynamics 

(Hou et al., 2018). Phosphorus-rich soils may 

support unique fauna assemblages than 

phosphorus-deficient soils, highlighting the 

role of nutrient stoichiometry in structuring 

soil ecosystems (X. Chen et al., 2022). 

The relationships between soil quality 

measures and soil fauna are intricate and varied, 

frequently exhibiting nonlinear responses and 

feedback processes. Understanding this 

interaction is critical for developing effective 

sustainable soil management practices and 

conservation measures. Incorporating soil 

fauna concerns into soil quality assessments 

can help us better monitor ecosystem health 

and resilience. Furthermore, integrating 

knowledge from many ecological contexts, 

such as agricultural systems, natural 

ecosystems, and urban habitats, might provide 

valuable insights into soil faunas' ability to 

adapt to environmental changes. This review 

advances our understanding of soil ecosystem 

dynamics by examining the intricate interplay 

between soil characteristics and soil fauna 

groups.  

 

 

 

Temperature  

Global climate patterns influence soil 

invertebrates’ diversity, with warmer, wetter 

climates having higher diversity but exceptions 

for hibernating species (Falvo et al., 2019; 

Kudureti et al., 2023; Snyder & Callaham, 

2019). Although soil fauna evolved to a wide 

range of temperature fluctuations, long-term 

soil warming may impact their behavior, 

abundance, and ecosystem processes (Snyder 

& Callaham, 2019). Larger invertebrates such 

as earthworms, ants, and termites significantly 

impact the ecosystem by burrowing and 

creating nests. Increasing warmth minimizes 

the activity of insects, earthworms, and 

microarthropods by reducing their contribution 

to litter breakdown (Mukherjee, 2022). The 

reduction happens through two mechanisms: 

warmer temperature increases litter C/N ratio 

and fauna density, presumably due to smaller 

organisms. Increased microorganism activity 

utilizes all oxygen (O2) and produces carbon 

dioxide (CO2), thus limiting the activity of 

other fauna (Mukherjee, 2022). These 

conditions diminish soil fauna's contribution to 

decomposition. In contrast, increased wetness 

increases the diversity of soil fauna, which has 

a more significant impact on decomposition 

(Tan et al., 2021). Microbial activities increase 

with temperature (increased soil respiration), 

but the inverse effect on moisture level is due 

to the filling of pores by water. Drought affects 

soil porosity and water-holding capacity, 

decreasing fauna populations and altering 

community compositions. Climate and 

atmospheric CO2 changes can affect litter 

quality, prompting soil animals to adjust their 

diets and possibly restrict reproduction for 

survival. Habitat loss owing to deteriorating 

soil physical-chemical characteristics is a 

significant issue influencing soil fauna, with 

rising salt being especially harmful in acid 

environments (Fig.1) (Kudureti et al., 2023).  
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Figure 1. Impact of Temperature on soil fauna, 

 

Soil respiration is the process by which 

microorganisms break down organic materials 

in the soil, releasing CO2 as a by-product. The 

temperature coefficient (Q10) is commonly 

used to characterize the temperature soil 

respiration relationship (Hamdi et al., 2013). 

This coefficient denotes the factor by which 

the rate of a biological process (such as 

respiration) changes with each 10-degree rise 

in temperature. Recent studies have shown that 

the temperature response of soil microbial 

respiration is more complex than a simple Q10 

connection. Therefore, researchers adopt the 

macromolecular rate theory instead (Alster et 

al., 2022). (Fig. 2) revealed that microbial 

mechanisms driving the temperature 

sensitivity of soil respiration vary by season. 

High-yield microorganism efficiently breaks 

down organic matter in soil carbon cycling, 

releasing CO2 throughout the decomposition 

process. R-strategies microbe breaks down 

organic materials and emits CO2 as they 

metabolize substrates. K-strategies microbe in 

soil serves an essential function in stabilizing 

organic materials and promoting humus 

development. Their activities prioritize long-

term carbon storage and stability, leading to 

delayed release of CO2 (Malik et al., 2020). 

Temperature-induced reactions by soil fauna 

can have an impact on the nutrient cycle, 

carbon sequestration, and overall ecosystem 

health (Wang et al., 2021).  
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Figure 2. Microbial mechanisms driving the temperature sensitivity of soil respiration  (source: (Yang et al., 

2022)) 

 

pH: 

Soil pH accounts for the acidity and alkalinity 

of the soil (Queensland, 2024). Soil abiotic 

factors, particularly pH, have been shown to 

influence soil biodiversity and organism 

distribution, mainly bacteria and 

fungi(Heděnec et al., 2022). Liming soil pH in 

both arable and grassland systems has 

increased the population of bacteria, 

nematodes, and earthworms while decreasing 

fungal abundance (Holland et al., 2018). Soil 

acidification influences the mobility of 

elements like Ca, Al, Mn, and P, influencing 

plant tissue chemistry and biomass ratios and 

affecting the richness and variety of soil fauna 

(Duddigan et al., 2021). Soil fauna interacts 

with soil pH through various physiological, 

ecological, and behavioral mechanisms 

influencing their abundance, diversity, activity, 

and geographic distribution within soil 

ecosystems. Physiological tolerance is 

essential, with different soil fauna species 

adapting differently to acidic and alkaline pH 

situations (Alexander, 1980; Duddigan et al., 

2021). This adaptability is regulated by the 

soil's solubility of essential minerals and 

nutrients, directly impacting soil fauna’s 

nutrient acquisition and metabolic process. 

Furthermore, soil pH significantly affects the 

decomposition rates and chemical composition 

of organic matter, influencing the availability 

and quality of food resources for soil fauna 

(Barrow & Hartemink, 2023). Microbial 

interaction influences these dynamics, as soil 

pH affects the makeup and activity of soil 

microbial communities, which are essential 

components of soil food webs (Aciego et al., 

2009; Han et al., 2021). Soil pH changes 

habitat appropriateness, with some soil fauna 

species preferring specific pH ranges for 

nesting, burrowing, and feeding Fig. 3. 

However, excessive pH values can be 

poisonous or stressful to soil fauna, forcing 

adaptive responses to counteract the negative 
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consequences (Alexander, 1980; Wyman & 

Hawksley-Lescault, 1987). Soil pH regulates 

nutrient cycling, such as nutrient availability, 

mineralization, and immobilization rates, 

influencing nutrient dynamics and resource 

availability for soil fauna (Cheng et al., 2013). 

Understanding these complex relationships is 

critical for anticipating and regulating soil 

fauna's response to pH fluctuations caused by 

natural processes or human activities such as 

climate change and land management 

techniques. Different organisms adapted to 

different ranges of pH (e.g., earthworms(5.0-

9.0) (S et al., 2016), nematodes(3.0-10.0) 

(Khathwayo et al., 2021), rotifers (6.0-8.0) 

(Yin & Niu, 2008), tardigrade (7.5+) (Sanchez-

Martinez et al., 2023), springtails(5.0-7.5) 

(Wikipedia, 2024) etc.  

 

Electrical conductivity (EC): 

The amount of saline water in the soil 

influences its electrical conductivity (EC) 

(Friedman, 2005). It indirectly has a wide 

range of complex effects on soil fauna, 

influencing their abundance, diversity, 

behavior, and ecological role within soil 

ecosystems. Elevated EC levels, commonly 

linked with increasing soil salinity, cause 

osmotic stress in organisms (Armstead et al., 

2016), impacting physiological processes and 

reproductive success (Educators, 2014; Haj-

Amor et al., 2022). Soil fauna reaction to EC 

gradient includes selected habitat preferences, 

with certain species tolerating saline 

environments and others sensitive to increased 

conductivity levels (H. Chen et al., 2022). This 

differential habitat selection contributes to 

changes in soil fauna community structure and 

diversity since salinity-tolerant species may 

predominate in salty soils, affecting trophic 

dynamics  (Zhang et al., 2019; Kefford, 1998; 

Reid et al., 2021).  

Salinity sensitivity varies among soil 

microorganisms. Prokaryotic α-diversity 

indices are significantly reduced as salt 

increases. Ascomycota was 1.3 times more 

common for fungi in saline habitat 

environments than Basidomycota  (21% fewer) 

(H. Chen et al., 2022). Actinomycetes and 

fungi are less affected than bacteria, except 

halophilic bacteria, which flourish in salty 

environments (Dakota, 2024). With a 

significant drop in biodiversity under saline 

circumstances, these dominating microbial 

groups with high niche preferences will play a 

more critical role in regulating nutrients and 

energy transport and constraining soil organic 

carbon (SOC) dynamics (H. Chen et al., 2022). 

Elevated EC can inhibit microbial functions, 

including respiration and nitrification (Lai et 

al., 2012). Changes in EC upset the delicate 

balance between microbial diversity and 

biomass (Reid et al., 2021). It affects how 

organisms move and absorb critical nutrients. 

Earthworms, nematodes, and microarthropods 

are all essential components of nutrient cycling 

in soil. They degrade organic materials, 

releasing nutrients that are needed for plant 

absorption. High EC levels have the potential 

to influence soil fauna activity. For example, 

earthworms may avoid saline spots, which 

impacts nutrient distribution (Owojori & 

Reinecke, 2014). Changes in nutrient cycling 

of soil fauna by high EC affect plant health and 

growth, resulting in overall ecosystem function. 

 

Dissolved oxygen (DO) 

Dissolved oxygen (DO) in soil are tiny bubbles 

of gaseous oxygen (O2) mixed in water within 

the soil (Mukherjee, 2022). These dissolved 

oxygen molecules are available for respiration 

by organisms living in the soil, an essential 

activity for practically all life. The principal 

source of DO is the atmosphere and aquatic 

plants. Plant roots absorb oxygen through soil 

macropores and dissolved oxygen in soil 

moisture. The transport of O2 in soil porosity 

is critical as larger pores provide faster gas 

transport than smaller ones with less efficient 

aeration (Mukherjee, 2022). The gas diffusion 

coefficient (Dp) depends on soil texture, 

structure, pore size distribution, and 
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tortuosity(Neira et al., 2015). Organic matter 

influences soil characteristics and structure as 

well as oxygen delivery. Adequate DO level is 

required for microbes,  invertebrates, and other 

aquatic vertebrates (Kulkarni, 2016) because 

they promote their growth and survival 

(Sharma & Kumar, 2023). For example, 

earthworms obtain oxygen through cutaneous 

respiration (by skin). The skin of earthworms 

is moist and thin, which easily allows oxygen 

to pass from the soil into the body. DO 

significantly impacts the breakdown rates of 

various plant litters (Phragmites et al., 

lutarioriparia, and Cares spp). Adequate 

oxygen levels support these activities, which 

include organic matter decomposition and 

nutrient cycling (Sharma & Kumar, 2023).  

Litter decomposition releases carbon, nitrogen, 

and phosphorus into the water. It increases the 

release of C and N, but not specifically  P. High 

DO encourages specific bacteria in litter 

breakdown, promoting nutrient cycling and 

lake eutrophication (Liu et al., 2022). 

Restricted O2 supply causes anaerobic 

conditions in the soil, damaging plant growth 

and yield. Many critical metabolic activities 

are hampered under such a setting. Poor 

oxygen availability reduces microbial activity, 

affecting processes such as nitrification and 

sulfur oxidation except for anaerobic adapted 

organisms, leading to methane CH4 

production and global warming (Sharma & 

Kumar, 2023). DO level is affected by 

temperature, salinity, biological activity, and 

water turbulency. The maximal growth rate of 

nitrification processes appears to be regulated 

by dissolved oxygen concentrations ranging 

from 0.3 mg/l to 4.0 mg/l.  According to 

studies, a dissolved oxygen content of more 

than 4.0 mg/l is required for maximum 

nitrification rates, but others found that 0.5 to 

1.0 mg/l is sufficient (Stenstrom & Poduska, 

1980). 

 

 

 

Dissolved organic matter (DOM) 

Dissolved organic matter (DOM) is an 

essential source for soil fauna, regulating their 

eating habits, growth rates, and community 

interaction. Dissolved organic matter (DOM) 

substantially impacts soil dynamics, 

influencing nutrients and pollutants' 

interaction with microbial function (Bolan et 

al., 2011). It is a sensitive indicator of 

ecological process changes, such as bacterial 

proliferation in the water distribution system. 

Additionally, it provides a carbon source for 

anaerobic soil organisms, contributing to the 

reduction and emission of greenhouse gases. 

Organic pesticides applied to soil and aquifers 

are partitioned preferentially into DOM, 

impacting pesticide migration into 

groundwater (Bolan et al., 2011). Soil DOM 

composition is strongly linked to plant types 

along the elevation gradient. Deterministic 

processes dominate the microbial community 

assembly at high elevations. Bacterial 

populations accelerate the breakdown of labile 

DOM molecules at low elevations. Fungal 

community diversity and composition are 

critical indicators of soil nutrient cycling 

(Wang et al., 2023). For example, 

microsymbionts, arbuscular mycorrhizal 

fungus (AMF), and earthworms play essential 

roles in soil structure change and nutrient 

cycling (Barrios, 2007). 

 

Nutrient’s concentration  

(a)Soil Organic carbon (SOC) 

Soil organic carbon (SOC) is a measure of 

carbon present in Soil (about 58%) (Trivedi et 

al., 2018). Grassland stores roughly one-third 

of the total carbon stock (Bai & Cotrufo, 2022). 

Soil organic carbon (SOC) is a crucial energy 

source for bacteria, fungi, and invertebrates 

(Trivedi et al., 2018). It is derived from rotting 

plant and animal materials. SOC concentration 

encourages microbial proliferation and 

diversity (Bai & Cotrufo, 2022; Han et al., 

2021). Soil microbial biomass (SBM) is 

essential in SOC turnover, mediating carbon 
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and nutrient transformation. The size of the 

SBM pool is often positively correlated with 

organic matter input and SOC content, 

indicating a balance between SOM 

mineralization and stability. Changes in the 

SMB-C to SOC ratio can reflect shifts in 

ecosystem carbon balance, making it an 

essential indicator for tracking SOC changes 

(Wiesmeier et al., 2019). 

Soil fauna and their interactions with the biotic 

and abiotic elements have a role in a variety of 

processes that promote carbon stabilization or 

mineralization (Fig. 3). Bioturbation 

incorporates SOM into the soil profile, making 

it available to the soil microbial community or 

protecting it from mineralization, by mixing 

with soil particles as a particulate organic 

matter POM or mineral associated organic 

matter (MAOM). Soil fauna manage microbial 

populations by inhibiting or stimulating 

microbial activity and altering the microbial 

community composition by selective grazing 

or inoculum dispersal (e.g., passive transfers of 

microorganisms). 

 

 
Figure 3. Mechanism of carbon sequestration (source: (Bai & Cotrufo, 2022)) 

 

Carbon sequestration involves absorbing, 

securing, and storing CO2 from the 

atmosphere. The goal is to keep carbon in solid 

and dissolved forms, preventing it from 

contributing to global warming. This is done 

by bio-sequestration (Carbon (CO2) is 

captured by the process of photosynthesis and 

stored in the biomass of plants and organisms 

or soil) or geologic carbon sequestration 

(injecting CO2 into geological formations like 
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deep underground reservoirs or saline aquifers). 

This process relies heavily on soil fauna, such 

as earthworms, insects, and bacteria. Soil fauna 

reduces organic substances (fallen leaves and 

plant detritus) to small particles. This 

degradation releases carbon molecules into the 

soil (Heděnec et al., 2022). Earthworms and 

other burrowing organisms produce channels 

in the soil, improving aeration and mixing. 

This accelerates the breakdown of organic 

material and encourages carbon storage. Soil 

animals contribute to nutrient cycling by 

digesting organic matter and excreting 

nutrient-rich excrement. This has a direct 

impact on the carbon cycle. Soil fauna interacts 

with soil microbes, which affects microbial 

activity and decomposition rates (Heděnec et 

al., 2022; Trivedi et al., 2018). Microbes 

further convert organic matter into stable 

forms. Soil fauna aids in soil aggregation by 

producing aggregates that preserve organic 

carbon from fast degradation (Wiesmeier et al., 

2019). (Table. 1) represents the role of s in the 

Carbon cycle. 

 
Table 1. Role of organisms in the carbon cycle 

Organisms  Role in carbon cycle  Impact  Reference 

Plants  Intake of carbon 

(photosynthesis) Outlet 

carbon (respiration) 

Higher trophic level carbon 

transformation 

(da Fonseca-

Pereira et al., 2020) 

Microalgae, e.g., Rhodophyta, 

Chlorophyta, 

Heterokontophyte, diatoms 

Convert CO2 from the 

atmosphere into biomass 

through photosynthesis  

Enhance C availability in 

aquatic ecosystems 

(Dolganyuk et al., 

2020) 

Terrestrial green plants C transfers to herbivores 

and omnivores  

Links food chain 

(herbivores intake carbon 

by plant consumption) 

(Coq et al., 2022) 

(da Fonseca-

Pereira et al., 2020) 

Detritivores, e.g., millipedes, 

earthworms, woodlice, snails) 

Release C from organic 

matter (CO2) 

Decomposition C 

connection  

(Hobbie & 

Villéger, 2015) 

Decomposer bacteria, e.g., 

cyanobacteria  

return C to the 

environment by dead 

plants and animals’ 

consumption  

Soil C enrichment (Gougoulias et al., 

2014; Raza et al., 

2023) 

Carbon-fixing bacteria, e.g., 

Synechococcus, 

Prochlorococcus) 

Fix CO2 by photosynthesis  Establish symbiotic 

relationships (plants- 

microorganism symbiotic 

relationship) 

(Gougoulias et al., 

2014; Raza et al., 

2023)  

Fossil fuel burning, e.g., 

Human activity) 

Increment of CO2 in air  Change in natural climate 

balance (anthropogenic 

climate change) 

(Raza et al., 2023) 

Phytoplankton (Aquatic), e.g., 

diatoms, Prochlorococcus 

Support marine carbon 

cycle by C-fixing  

Support diverse marine 

ecosystem 

(Hobbie & 

Villéger, 2015) 

Fungi e.g., Trichoderma, 

Phanerochaete 

chyrysosporium, Stropharia 

rugosoannulata 

Return C to environments 

during decomposition. 

Enhance C cycle in soil (Raza et al., 2023) 

Oceanic Zooplankton, e.g., 

diatoms, Krill, Salps, 

Chaetognaths 

 Marine food web C 

transfer 

Marine C transport  (Hobbie & 

Villéger, 2015) 

Forests and soil  C- sink Regulate atmospheric CO2 

level 

(Fung et al., 2005) 

 

(b) Nitrogen (N) 

Nitrogen is essential to amino acids, proteins, 

and nucleic acids. Microbes play an important 

part in nitrogen cycling, converting it into 

various forms (such as ammonium, nitrate, and 

organic nitrogen) (Fig. 4) (Table. 2) (Barrios, 
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2007; Han et al., 2021). However, 

investigations have shown inconsistencies due 

to variances in soil faunal taxonomy, N 

deposition rate, and ecosystem types. 

According to the study of (Cole et al., 2008), 

(N) addition increases the abundance of 

mesostigmatan (mites) and Collembola 

(springtails) but no change for Oribatid mites’ 

abundance. Nematode’s abundance decreases 

with N addition rates ranging from <50 

kg/ha/year to >150 kg/ha/year. Inorganic 

nitrogen (e.g., NH4NO3, NaNO3) has a 

deleterious impact on nematodes, but organic 

fertilization has no appreciable effect.  Adding 

nitrogen to grasslands and crop ecosystems 

reduces nematode abundance but does not 

impact the forest ecosystem (Hu et al., 2022). 

Under warm and all-year humid climate 

conditions, the proportion of potentially 

mineralizable nitrogen in the soil's total 

nitrogen is much lower than in dry or 

temperate situations (Nendel et al., 2019). 

Application of organic fertilizers indicates a 

positive impact on springtails, mites, and 

earthworms’ abundance compared to inorganic 

fertilizer application, which has a detrimental 

impact on earthworms' density (Betancur-

Corredor et al., 2023). Soil fauna (meso and 

macrofauna) can impact nitrogen dynamics in 

mineral soil by influencing surface chemical 

composition. Fauna influences the 

mineralization through litter quality indicators 

(e.g., C/N, %N, %P). The effect of fauna on 

litter composition is time-dependent, with a 

more significant effect during the early and 

intermediate stages of decomposition (Carrillo 

et al., 2011).  

 

 
Figure 4.  Nitrogen cycle. 
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Table. 2 Role of the organisms in the nitrogen (N) cycle 

Organisms Role in the N cycle Impact  References  

N- Fixing bacteria  

Free-living e.g., Azotobacter, 

Beijerinckia, Clostridium, 

Cyanobacteria (Ababaena, Nostoc)  

Symbiotic, e.g., Rhizobium, Frankia, 

Azospirillium 

Convert atmospheric 

N2 into NH3 or (NO3-) 

Make nitrogen 

available to plants  

(Bernhard, 2010; 

Singh, 2021) 

Nitrifying bacteria, e.g., Nitrosomonas, 

Nitrosococcus, Nitrospira, Nitrospinota, 

etc. 

Convert ammonia 

NH3 to NO2- and NO3- 

Plants N uptake 

facilitation. 

(Bernhard, 2010; 

Singh, 2021) 

Denitrifying bacteria, e.g., Thiobacillus 

denitrificans, Micrococcus 

denitrificans, Seratia species, 

Achromobacter, Psedomonas 

Convert NO3- back 

into atmospheric N2 

Regulate N2 level (Bernhard, 2010; 

Singh, 2021) 

Ammonifying bacteria, e.g., 

Clostridium, Streptomyces, Proteus, 

Bacillus 

Decompose organic 

nitrogen into NH4+. 

N cycling by NH3 

decomposition  

(Bernhard, 2010; 

Singh, 2021) 

Plants  Nitrogen uptake NO3- 

or NH4+ form 

Food web and plant 

growth  

(Hobbie & Villéger, 

2015; Koller-France 

E, (2021)) 

Decomposers (Fungi) 

Mycorrhizal Fungi, e.g., Trichoderma, 

Mucor, Aspergillus 

saprophytic e.g., AMF, ECM 

Litter-decomposing, e.g., 

Phanerochaete chrysosporium, 

Pleurotus ostreatus 

Endyphytic e.g., Claviceps purpurea, 

Epichloe sp 

Release nitrogen by 

OM decomposition 

Soil nitrogen 

enrichment  

(Singh, 2021; Ye et 

al., 2024) 

Animals, e.g., herbivores, carnivores, 

scavengers, etc. 

Nitrogen consumption 

by animals and plants 

intake 

Nitrogen transfer in 

the food chain, 

nutrient cycling  

(Koller-France E, 

(2021)) 

Human activities  Waste management, 

industrial usage, 

fertilizers 

Ecosystem N2 level 

change  

(Bernhard, 2010; 

Koller-France E, 

(2021)) 

Ammonia= NH3, nitrate= NO3-, Nitrite= NO2-, ammonium= NH4+, OM= organic matter,  

Arbuscular Mycorrhizal Fungi= AMF, Ectomycorrhizal Fungi= ECM 

 

(c)Phosphorus (P) 

Phosphorus (P) concentration alters soil by 

affecting plant growth, microbial activity, and 

nutrient cycling pathways (Hou et al., 2018) 

(Table 3). Soil fauna considerably impacts P 

release during litter decomposition 

(Mackenzie et al., 2002). The rate of P release 

mediated by animals is more sensitive to plant 

species (quality of the original litter). The rate 

of P emission by animals is regulated by local 

scale environmental conditions (e.g., 

temperature) (Zhang et al., 2022). Soil fauna 

effects are most noticeable in the dry valley, 

followed by ecotone and montane forests. The 

effect of soil fauna varied between 

decomposition periods; winter in the dry valley 

boosts P release mediated by soil fauna. The 

type of ecosystem is critical in determining 

how soil fauna affects P release (Peng et al., 

2015). The initial litter quality influences the 

rate of P release (Pei et al., 2019). Temperature 

is a significant modulator of the P release rate 

mediated by fauna (Peng et al., 2019). 

According to (X. Chen et al., 2022), phosphate 

activity and accessible P levels are 6.8%, 8.5%, 

and 4.6% higher in species combinations than 
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monocultures. Promoting plant diversity may 

boost soil phosphatase activity and P 

availability, supporting terrestrial ecosystem 

production in the present and future. (Fig. 5) 

represents the comprehensive overview of the 

phosphorus cycle. 

 
Table 3. Organisms’ role in the phosphorus cycle 

Organisms  Role in P cycle Impact  Reference  

Plants and algae, e.g., diatoms, green 

algae, cyanobacteria, euglenoids 

Assimilation and 

transformation of P 

Ecosystem 

productivity and 

nutrient cycling 

(Cembella et al., 

1984) 

Microorganisms, e.g., actinomycetes, 

Pseudomonas, Bacillus, Aspergillus  

Penicillium 

P solubilization  Nutrient uptake 

assistant and 

recycling  

(Hobbie & 

Villéger, 2015) 

Decomposer Bacteria e.g., Trichoderma 

harzianum 

P release from dead 

organism  

Soil P enrichment  (DyhrMaN et al., 

2007) 

Aquatic organism e.g., Cyanobacteria, 

rotifers  

Pickup P containing 

compound from water 

Change water quality 

and eutrophication  

(Istvánovics, 2008) 

Mycorrhizal fungi e.g., Arbuscular 

Mycorrhizal (AM), Trichodema 

harzianum 

Enhance phosphorus 

uptake by symbiotic 

association  

Enhance plant growth 

and nutrient 

acquisition 

(Hobbie & 

Villéger, 2015) 

Terrestrial animals (e.g., earthworms, 

millipedes) 

Mineralization and 

immobilization process 

P availability 

regulation in soil  

(Le Bayon & 

Milleret, 2009) 

Freshwater zooplankton, e.g., daphnia, 

copepods 

Algae grazing, P cycling 

in aquatic ecosystem  

Affects nutrient 

dynamics in lakes and 

ponds  

(Istvánovics, 2008) 

Marine phytoplankton, e.g., 

cyanobacterium, i.e., diazotrophic 

cyanobacteria, Prochlorococcus, 

Synechococcus 

Marine food web 

support by fixing P from 

seawater 

Ocean productivity  (DyhrMaN et al., 

2007; Istvánovics, 

2008) 

 

 
Figure 5. Phosphorus cycle 
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Assessment and implications 

The faunal community in soil has a strong 

relationship with soil quality. Using the soil 

faunal community as an indicator of soil 

quality is not cost-effective due to the 

complicated taxonomic distinctions and 

identification. Also, the assessment’s potency 

is limited to soil function. The FAI 

(Abundance-based fauna index) method 

assesses soil quality by considering soil fauna 

diversity and functional traits. However, this 

method requires detailed taxonomic 

knowledge and can be labor-intensive due to 

complex identification processes (Yan et al., 

2012).  Bioassay can directly evaluate the 

impacts of soil pollutants on live organisms, 

providing evidence of soil toxicity or health 

(Shi et al., 2017). However, they may not 

reflect long-term or subtle effects on soil fauna 

and can be influenced by external influences. 

Biodiversity surveys provide a snapshot of soil 

fauna, which can be used to assess soil health 

and ecosystem function. They may miss 

seasonal or temporal fluctuations, which can 

be time-consuming. Molecular techniques 

(fluorescence In-Situ Hybridization (FISH), 

quantitative polymerase chain reaction (qPCR), 

real-time PCR (RT-PCR, next generation 

sequencing NGS)) can detect and quantify 

single organisms or groups, providing precise 

insights on soil biodiversity (Váradi et al., 

2017). However, they needed specialized 

equipment and knowledge and may not 

provide information on the functional roles of 

organisms found. Modeling forecasts the 

influences of various management strategies 

on soil quantity and fauna without requiring 

substantial fieldwork. However, the limitation 

of the model is that it is only as good as the data 

and assumption upon which they are built and 

may fail to represent all of the intricacies of the 

soil ecosystem (Van Leeuwen et al., 2019). 

The optimal technique for assessing the impact 

of soil quality on soil fauna is determined by 

the targeted soil fauna accessible resources and 

the study’s objectives. Each method has pros 

and cons; thus, combining methodologies will 

provide the most robust assessment of soil 

quality’s impact on soil fauna. Measuring 

SMB is a low-cost and precise method for 

estimating microbial biomass pool size and 

evaluating SOC dynamics (Wiesmeier et al., 

2019) 

Temperature, precipitation, and fire regime 

changes influence soil fauna diversity and 

abundance. Overgrazing and land use 

conversion deplete soil carbon storage. Fauna-

mediated variations in nitrogen availability can 

impact ecosystem production (Carrillo et al., 

2011). Soil animal diversity is best described 

by various life history techniques and soil 

heterogeneity rather than severe competition 

(Cole et al., 2008). Understanding the soil 

DOM composition helps to predict climate 

change's impact on soil carbon sequestration 

and advise ecosystem management (Wang et 

al., 2023). Ensuring adequate soil aeration is 

critical for optimal plant growth and 

microorganism activity. Drainage, organic 

matter addition, and optimal tillage all 

contribute to maintaining the ideal O2 level in 

the soil (Sharma & Kumar, 2023). Plant and 

litter mix with higher species richness are 

expected to improve soil fauna diversity. Using 

less intensive farming practices, such as 

organic fertilization, in conjunction with site-

specific N fertilization regimes, is an effective 

strategy for conserving and improving healthy 

soil fauna ecosystems (Betancur-Corredor et 

al., 2023). Increasing plant diversity can 

improve soil organic carbon (SOC) storage. 

Sustainable grazing strategies improve SOC 

sequestration. Planting leguminous crops in 

pastures aids in carbon capture (Bai & Cotrufo, 

2022).  

 

CONCLUSION  

Soil fauna, spanning diverse taxa from 

microorganisms to larger invertebrates, 

significantly impact nutrient cycling, organic 

matter decomposition, and soil structure 

formation. Soil quality indicators, such as 
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temperature, pH, Electrical conductivity, 

dissolved organic matter,  and nutrient 

availability, directly and indirectly affect soil 

fauna communities. These parameters shape 

their abundance, diversity, and functional roles. 

Understanding these interactions is essential 

for sustainable soil ecosystem management. 

Soil fauna's response to changing 

environmental conditions has cascading 

effects on ecosystem processes, highlighting 

the interconnectedness of biological and 

abiotic factors in soil ecosystems. For example, 

Changes in soil temperature can influence 

microbial activity, which in turn influences soil 

fauna’s nutrient availability and quality. These 

changes subsequently affect the functional 

roles of soi fauna in nutrient cycling and 

organic matter decomposition processes. 

Similarly, changes in soil pH can directly 

impact soil fauna physiology behavior, 

cascading through the ecosystem process.  

Integrating Soil fauna consideration into soil 

health assessments is critical for holistic 

ecosystem management approaches. 

Evidence-based strategies informed by 

scientific knowledge of soil distribution 

organic matter, organic matter decomposition, 

and soil structure formation guide conservative 

efforts and enhance ecosystem services. 

Understanding these intricate interactions 

becomes essential for anticipating and 

managing ecological responses to climate 

change, particularly as global temperature rise 

and environmental pressure intensify. 
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