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ABSTRACT 

 

Osteoporosis is a chronic skeletal disorder 

characterized by decreased bone mineral 

density and deterioration of bone 

microarchitecture, leading to increased 

fracture risk. This review outlines the 

multifactorial pathophysiology of 

osteoporosis, emphasizing the impact of 

estrogen deficiency, oxidative stress, pro- 

and anti-inflammatory cytokines, and 

disruption of key molecular pathways such 

as RANK/RANKL/OPG and Wnt/β-catenin. 

These factors collectively impair the 

balance between bone resorption and 

formation, with glucocorticoid use further 

exacerbating bone loss. Therapeutic 

strategies are broadly classified into 

antiresorptive agents—including 

bisphosphonates, SERMs, denosumab, 

calcitonin, and cathepsin K inhibitors—and 

anabolic agents such as teriparatide, 

abaloparatide, and statins. Dual-action 

therapies like romosozumab, along with 

combination and sequential regimens, offer 

potential for enhanced efficacy, particularly 

in high-risk individuals. Despite significant 

advances, treatment-related adverse effects 

and limitations persist. The review 

highlights the necessity for developing 

safer, more targeted interventions that can 

restore bone homeostasis with improved 

long-term outcomes. A mechanistic 

understanding of bone remodeling and 

personalized therapeutic strategies remain 

essential to effectively manage and prevent 

osteoporosis. 
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1. INTRODUCTION 

Osteoporosis is defined by diminished bone 

mineral density (BMD) along with 

compromised microarchitecture, increasing 

fracture risk (1). The WHO defines 

osteoporosis as a BMD T-score at or below 

-2.5 using DXA scan (Dual-energy X-ray 

absorptiometry). An estimated 3 out of 10 

women and 1 out of 8 men develop this 

condition during their lifetime (2), with a 

global prevalence estimated at 200 million 

individuals (3). Osteoporosis progresses 

silently until fractures occur (4). Primary 

osteoporosis is classified as type I 

(postmenopausal, estrogen deficiency-

induced) or type II (senile, aging-related), 

while secondary osteoporosis arises from 

diseases or medications (5). Nearly 50% of 
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postmenopausal women suffer osteoporotic 

fractures, with 25% developing vertebral 

deformities and 15% sustaining hip 

fractures (3). Bone mass loss primarily 

drives osteoporosis, influenced by aging or 

estrogen deficiency, with glucocorticoid 

therapy exacerbating BMD loss (6). 

Bone remodeling involves basic 

multicellular units (BMUs), where 

osteoclasts resorb bone and osteoblasts form 

new matrix, maintaining skeletal integrity. 

Disruption of this balance underlies 

osteoporosis (7). Risk factors include 

genetics, aging, hormonal changes, 

prolonged glucocorticoid use, poor diet, 

inactivity, vitamin D deficiency, smoking, 

and alcohol consumption (8,9). 

Therapies include hormone replacement, 

SERMs (e.g., raloxifene), bisphosphonates 

(alendronate, risedronate, zoledronic acid), 

calcitonin, recombinant human parathyroid 

hormone (rhPTH), strontium ranelate, and 

denosumab (10,11). However, these 

treatments have significant drawbacks, such 

as medication-related osteonecrosis of the 

jaw (MRONJ), atypical femoral fractures, 

and decreased serum calcium levels (12–

15). 

Recent research implicates estrogen 

deficiency, oxidative stress, pro-

inflammatory cytokines, and dysregulation 

of the RANKL/RANK/OPG and Wnt/β-

catenin signaling pathways as key drivers of 

osteoporosis. Hormonal withdrawal, 

glucocorticoid therapy, and chronic 

inflammation contribute to increased 

osteoclastogenesis and impaired osteoblast 

function, resulting in imbalanced bone 

remodeling. Current antiresorptive and 

anabolic therapies—including 

bisphosphonates, SERMs, denosumab, 

teriparatide, and cathepsin K inhibitors—

offer therapeutic benefit but are often 

limited by adverse effects and long-term 

safety concerns. 

This review integrates a comprehensive 

understanding of osteoporosis 

pathophysiology and evaluates existing 

pharmacological strategies, highlighting the 

need for safer, more targeted approaches 

that can effectively restore bone 

homeostasis.  

 

2. PATHOPHYSIOLOGY OF 

OSTEOPOROSIS: 

2.1. Overview of Bone biology: 

Bone is a metabolically active connective 

tissue comprising an organic matrix 

(collagen type I, sulfated proteoglycans, 

adhesive glycoproteins like osteonectin and 

osteocalcin) and an inorganic matrix 

(hydroxyapatite, calcium, bicarbonate, 

citrate, magnesium, potassium, sodium) 

(16–18). Hydroxyapatite confers rigidity 

(50–70% of bone mass), while the organic 

matrix (20–40%) imparts elasticity (19). 

The cellular constituents of bone tissue 

comprise osteoprogenitor cells, osteoblasts, 

osteocytes & osteoclasts. Osteoprogenitor 

cells, which arise from mesenchymal stem 

cells, serve as precursors to osteoblasts, 

synthesizing the matrix, and osteocytes, 

which regulate intercellular signaling 

(20,21). Osteoclasts, originating from 

monocyte–macrophage precursors, are 

specialized in degradation of bone tissue 

(22). The mature skeleton is predominantly 

composed of cortical (~80%) and trabecular 

(~20%) calcified tissue, with cortical bone 

structured into osteons (Haversian systems) 

(19). 

 

2.2. Bone remodeling and imbalance: 

Bone modeling adapts skeletal morphology 

to physiological and mechanical demands, 

while remodeling involves sequential 

resorption, reversal, and formation phases 

(Figure 1) (23–25). 
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FIGURE 1: Schematic presentation of the different phases of bone remodelling. 

 

Osteoclasts are activated by RANKL and 

M-CSF signaling, leading to bone 

resorption. Osteoblasts then fill the resorbed 

cavities by synthesizing new matrix and 

promoting mineralization. Regulatory 

molecules like OPG, RANKL, and M-CSF 

orchestrate this process to maintain skeletal 

homeostasis. 

Resorption involves preosteoclast migration, 

fusion into multinucleated osteoclasts, and 

matrix degradation, followed by reversal 

with mononuclear cell recruitment of 

osteoblasts and subsequent bone formation. 

Resorption lasts ~2 weeks, reversal phase of 

4–5 weeks, and then formation up to 4 

months (26). 

Biochemical markers such as alkaline 

phosphatase (ALP), osteopontin (OPN), 

osteocalcin (OC), and Type I collagen 

assess bone formation. ALP facilitates 

mineralization, OPN regulates 

mineralization via calcium binding, OC 

binds hydroxyapatite, and collagen I forms 

the primary structural framework (27–29). 

 

Imbalance: 

An imbalance between resorption and 

formation results in decreased bone density 

and disrupted mineral homeostasis, leading 

to osteoporosis. Maintaining bone 

homeostasis requires precise regulation of 

cellular and molecular pathways (30). 

2.3. Cellular mechanisms and 

molecular pathways: 

Bone remodeling is chiefly regulated by the 

RANK/RANKL/OPG axis and the 

canonical Wnt/β-catenin signaling pathway 

(31,32). 

 

2.3.1. Wnt/β-catenin signaling: 

The Wnt/β-catenin siganling pathway 

critically regulates osteoblastogenesis (31). 

Upon binding to Frizzled and LRP5/6 

receptors, Wnt proteins prevent β-catenin 

degradation, allowing its accumulation and 

nuclear translocation to regulate target gene 

expression, promoting osteoblast 

differentiation, maturation, and survival 

while inhibiting osteoclastogenesis via OPG 

upregulation (33,34). Absence of Wnt 

signaling leads to β-catenin degradation 

(30). 

Sclerostin, encoded by SOST, inhibits Wnt 

signaling by binding LRP5/6 (35,36). LRP5 

mutations reduce bone mass (37); variants 

like p.Gly835Val increase idiopathic 

juvenile osteoporosis risk (38). Wnt 

pathway dysregulation contributes to 

glucocorticoid-induced osteoporosis (39). 

Romosozumab, an anti-sclerostin antibody, 

enhances bone formation, but further Wnt-

targeted therapies are under investigation. 

 

2.3.2. RANKL/RANK/OPG Pathway: 

Osteoblast- and osteocyte-derived RANKL, 

binds RANK on pre-osteoclasts, promoting 

development and survival in presence of M-

CSF. OPG, secreted by osteoblasts and 
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osteocytes, serves as a decoy receptor 

inhibiting RANKL-mediated activation of 

RANK (30). 

OPG genetic variants are associated with 

osteoporosis susceptibility (40), and 

elevated RANKL correlates with bone 

turnover markers (41). Denosumab, a 

RANKL inhibitor, effectively reduces bone 

resorption (40). 

 

2.3.3. Estrogen deficiency: 

Estrogen deficiency enhances bone 

resorption, especially post-menopause (42). 

It activates osteoclastogenesis by 

upregulating c-Jun in precursors and 

inhibiting osteoblast proliferation via 

GSK3β-mediated Wnt/β-catenin 

suppression (43). 

Estrogen receptors (ERs) in bone cells 

regulate IL-1, IGF-1, and TGF-β pathways, 

maintaining bone density (44). ERs also 

suppress bone resorption by modulating 

RANKL (45). Estrogen deficiency induces 

the expression of pro-inflammatory 

cytokines (IL-1, IL-6, TNF) and ROS, 

promoting osteoclastogenesis and inhibiting 

osteoblast function (46–48). 

Hormone replacement therapy, though 

effective, carries risks of breast cancer and 

cardiovascular disease (40), leading to the 

development of SERMs like raloxifene and 

bazedoxifene. While effective in preserving 

BMD, SERMs carry risks of 

thromboembolism and stroke (49,50). 

The ideal SERM would selectively mimic 

estrogen’s bone-protective effects without 

adverse systemic outcomes, necessitating 

further research. 

 

2.3.4. Oxidative stress: 

It is induced when ROS production 

surpasses cellular clearance mechanisms, 

causing cellular apoptosis and dysfunction 

(51–53). 

 

Correlation between Oxidative stress and 

Osteoporosis:  

Elevated ROS disrupt bone metabolism, 

decreasing BMD and enhancing risk of bone 

fractures. Females after menopause 

diagnosed with osteoporosis exhibit higher 

serum H₂O₂ levels and reduced antioxidant 

enzymes (54–56). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2: The Correlation between Oxidative stress and Osteoporosis. 

 

Oxidative stress (ROS) impairs bone 

homeostasis by promoting osteoclast 

differentiation from marrow monocytes and 

reducing osteoblast function. It suppresses 

ALP activity and Runx2 expression in bone 

marrow stem cells (BMSCs), leading to 

decreased mineralization and increased 

apoptosis. Autophagy acts as a regulatory 

mechanism to counteract ROS-induced 

damage and maintain osteoblast viability. 
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Mechanism of Oxidative stress in bone 

metabolism: 

a. Effect on Mesenchymal Stem Cells 

Derived from Bone Marrow:  

Oxidative stress impairs BMSC 

proliferation, survival, and osteogenic 

differentiation by disrupting Wnt/β-

catenin signaling and autophagy, 

reducing ALP activity and Runx2 

expression (57–60). 

b. Disruption of Osteoblast Activity: 

ROS activate JNK pathways, inducing 

osteoblast apoptosis, impairing 

mitochondrial function, and reducing 

mineralization (61–63). 

c. Stimulation of Osteoclast Development 

and Differentiation: 

ROS promote osteoclastogenesis by 

enhancing RANKL and M-CSF 

production and TRAP expression (64). 

Thus, oxidative stress critically disrupts 

bone remodeling, making antioxidant 

therapies a promising strategy. 

 

2.3.5. Cytokines and Osteoporosis: 

Cytokines are key regulators of immune and 

inflammatory processes via complex 

signaling pathways (65). In osteoporosis, 

cytokines—particularly TNF, interleukins 

(ILs), and various growth factors (GFs)—

play critical roles in bone remodeling 

alongside osteoclasts and osteoblasts. The 

RANKL/RANK/OPG axis represents a 

central pathway within these cytokine-

mediated mechanisms (66). As proteins and 

glycoproteins secreted by various immune 

and stromal cells, cytokines facilitate 

intercellular communication and regulate 

bone metabolism (67). Cells such as 

macrophages, B cells, T cells, mast cells, 

endothelial and stromal cells contribute to 

bone turnover by secreting cytokines 

involved in both resorption and formation 

processes (68). Cytokines are typically 

categorized as either pro-inflammatory, 

which enhance inflammation, or anti-

inflammatory, which suppress it (65). Table 

1 shows the Effect of Cytokines on 

osteoporosis. 

2.3.6. PTH and Osteoporosis: 

Parathyroid hormone (PTH) regulates 

calcium and phosphate homeostasis (100). 

Chronic PTH elevation, as in primary 

hyperparathyroidism, induces osteoporosis 

(101,102). PTH acts via PTH1R receptors, 

activating cAMP/PKA and PLC pathways 

(103,104). Intermittent PTH exposure 

activates anabolic cAMP/PKA signaling, 

promoting osteoblast survival and bone 

formation. Continuous exposure activates 

catabolic PLC pathways, enhancing 

RANKL expression and bone resorption 

(104–111). Teriparatide, a PTH analog, is 

effective in increasing bone mass, 

particularly for glucocorticoid-induced 

osteoporosis (112,113). 

 

2.3.7. Calcitonin and Osteoporosis: 

Calcitonin inhibits osteoclast activity and 

supports BMD (114). 

However, its physiological relevance in 

humans remains uncertain, as chronic 

calcitonin alterations minimally affect 

calcium or bone homeostasis (115–119).  

Some studies suggest calcitonin protects 

under calcium stress and promotes 

osteoblast activity (120–122), though 

findings are inconsistent (123,124). Overall, 

calcitonin’s role in skeletal biology remains 

complex and not fully elucidated. 

 

2.3.8. Glucocorticoid and Osteoporosis: 

Glucocorticoids enhance bone resorption 

and inhibit bone formation (125). They 

prolong osteoclast survival (↑ RANKL, ↓ 

OPG) and impair osteoblast proliferation 

and differentiation (126,127). They also 

induce osteoblast-to-adipocyte 

transdifferentiation, disrupt BMP signaling, 

and promote apoptosis in osteoblasts and 

osteocytes (125–128). Glucocorticoid-

induced osteoporosis leads to higher 

fracture risk compared to postmenopausal 

osteoporosis. While antiresorptive therapies 

are approved, their long-term efficacy 

remains uncertain. 
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TABLE 1: Effect of Cytokines on osteoporosis. 

Pro-inflammatory 

cytokines: 

Effect on Osteoblast Effect on Osteoclast Effect on Osteocytes Overall Bone Impact References: 

TNF-α Induces RANKL and M-

CSF production at low 

concentrations. 

Impairs osteoblast 

function and inhibits 

bone formation at high 

concentrations. 

Downregulates IGF-1 

and RUNX2 expression, 

suppressing osteoblast 

differentiation. 

Promotes osteoclastogenesis. 

Upregulates RANK signaling 

and c-Fos expression. 

Upregulates RANKL and 

sclerostin expression. 

Promotes osteoclast formation 

both in vitro and in vivo. 

↑ Bone resorption ↓ Bone 

formation (osteoblast inhibition) 

(69–72) 

IL-1β Triggers p38 MAPK 

activation, promoting 

bone resorption. 

Reduces osteoblast 

viability. 

Facilitates osteoclast 

maturation and 

multinucleation. 

Elevates sclerostin secretion. 

Triggers osteocyte apoptosis. 

Amplifies osteocyte-mediated 

osteoclastogenesis. 

↑ RANKL, bone loss, osteoclast 

activity  

↓ Bone formation rate 

(73–80) 

IL-1α - Upregulates RANKL 

expression, enhancing 

osteoclastogenesis. 

Promotes osteocyte survival. 

Modulates bone homeostasis 

through Ca²⁺ and NO signaling. 

↑ Bone loss, osteoclast activity 

↓ OPG (Osteoprotegerin) 

(66,75,81–

84) 

IL-6 Suppresses osteoblast 

differentiation. 

Directly and indirectly 

stimulates osteoclast 

development. 

Limits the differentiation of 

osteoclast progenitors. 

Plays a crucial role in the 

interaction between osteocytes 

and bone metabolism. 

Modulates bone remodeling and 

osteoclastogenesis. 

Promotes osteocyte-mediated 

osteoclastic differentiation 

through the JAK2/STAT3 

pathway. 

↑ Osteoclast differentiation, bone 

resorption, osteogenic capacity. 

↓ Osteoblast differentiation, bone 

trabecular volume. 

(77,85–89) 

Anti-inflammatory 

cytokine 

Effect on Osteoblast Effect on Osteoclast Effect on Osteocytes Overall Bone Impact References: 

IL-10  Inhibits osteogenic 

activity in bone marrow. 

Restricts the differentiation of 

osteoclast progenitors. 

Inhibits RANK-induced 

osteoclast formation. 

Modulates bone metabolism and 

osteoclastogenesis. 

Suppresses bone resorption by 

upregulating OPG. 

Downregulates RANKL and 

↑ Bone formation, but also bone 

fragility. 

↓ Osteoclast differentiation, bone 

resorption, bone loss, and bone 

mineralization. 

(79,90–92) 
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CSF-1 expression. 

Synergizes with IL-4 to enhance 

osteoblast differentiation and 

mitigate inflammation. 

IL-4  - Directly and indirectly inhibits 

osteoclast formation. 

Suppresses the resorptive 

activity of mature osteoclasts. 

Modulates osteocyte-bone 

interactions. 

Cooperates with IL-10 to enhance 

osteoblast differentiation. 

Promotes an anti-inflammatory 

phenotype in macrophages. 

Suppresses osteoclastogenesis. 

↑ Osteoprotegerin (OPG), leading 

to reduced bone resorption. 

↓ RANKL, osteoclastogenesis, & 

bone resorption. Th2 cells 

induced by IL-4 prevent bone 

loss. 

(79,93–96) 

IL-13  - Suppresses osteoclast 

formation and bone resorption. 

Contributes to bone remodeling. 

May influence osteocyte function 

and metabolism through its anti-

inflammatory properties. 

Potentially regulates osteocyte 

activity and bone homeostasis. 

↑ Bone formation, resorption 

control, mass preservation, & 

bone tissue strength. 

↓ Bone loss. 

(97–99) 
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3. CURRENT TREATMENT OR 

THERAPEUTIC STRATEGIES FOR 

OSTEOPOROSIS: 

Osteoporosis treatments are broadly 

classified into two categories: antiresorptive 

drugs (“bone resorption inhibitors”) that 

reduce bone breakdown, and anabolic 

agents (“bone formation accelerators”) that 

stimulate bone formation (129). 

 

3.1. Antiresorptive medications: 

Antiresorptives suppress osteoclastogenesis 

and activity, lower bone turnover, and 

enhance mineralization, thereby restoring 

bone homeostasis. Key antiresorptive 

therapies include bisphosphonates, SERMs, 

calcitonin, and denosumab (130). 

 

3.1.1. Bisphosphonates: 

Bisphosphonates are first-line agents for 

osteoporosis (131). Nitrogenous 

bisphosphonates include, alendronate, 

risedronate, ibandronate, and zoledronate, 

disrupt osteoclast function via inhibition of 

the mevalonate pathway (132). Structurally 

analogous to pyrophosphate, they bind 

hydroxyapatite at active bone resorption 

sites (133). 

Alendronate effectively treats 

corticosteroid-induced and postmenopausal 

osteoporosis (131). Risedronate reduces 

bone turnover by inhibiting osteoclasts 

without compromising bone porosity (134). 

Ibandronate’s tertiary nitrogen group 

enhances affinity for hydroxyapatite, 

reversing estrogen depletion-induced bone 

loss (135). Zoledronic acid, a potent 

intravenous bisphosphonate, inhibits 

farnesyl pyrophosphate synthase (FPPS), 

improving BMD and reducing fractures 

(136). Prolonged bisphosphonate use may 

overly suppress remodeling, leading to 

medication-related osteonecrosis of the jaw 

(MRONJ) and atypical femoral fractures 

especially post-dental procedures (137–

139). 

 

3.1.2. Estrogen and SERMs (selective 

estrogen receptor modulators): 

Estrogen stimulates osteoblast activity and 

upregulates vitamin D₃ and calcitonin but is 

linked to increased risks of breast cancer 

and cardiovascular disease, limiting its long-

term use. SERMs emerged as alternatives, 

acting as ER agonists in bone while 

antagonizing breast and uterine tissues 

(140). 

Raloxifene hydrochloride suppresses 

osteoclast activity as an ER agonist in bone 

while reducing breast cancer risk. However, 

adverse events like deep vein thrombosis 

and pulmonary embolism constrain its 

clinical use (141). 

 

3.1.3. RANKL inhibitor: 

Denosumab, an IgG2 monoclonal antibody 

of human origin, inhibits osteoclast 

differentiation by neutralizing RANKL and 

thereby blocking its binding to RANK on 

precursors (142). It enhances BMD and 

reduces vertebral, hip, and non-vertebral 

fracture risks (143), primarily by increasing 

bone matrix mineralization through 

remodeling suppression (144). 

Sequential administration following 

teriparatide yields superior BMD 

improvements compared to bisphosphonates 

(145). Denosumab improves both trabecular 

and cortical bone architecture, unlike 

bisphosphonates, which predominantly 

affect trabecular regions (146). However, its 

effects are reversible after discontinuation 

(147), and rare serious adverse effects, 

including atypical fractures and 

osteonecrosis of the jaw, have been reported 

(148). 

 

3.1.4. Calcitonin: 

A 32-residue peptide, calcitonin is produced 

by thyroid C cells, regulates calcium by 

promoting deposition in bone, inhibiting 

renal reabsorption, and reducing 

gastrointestinal absorption. It binds 

osteoclast receptors, activating the 

cAMP/protein kinase A pathway and 

CREB-mediated transcription (149–151). 

Synthetic analogs, particularly salmon 

calcitonin, are widely used in intranasal, 
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subcutaneous, or intramuscular forms 

(152,153). 

Despite its efficacy, calcitonin is now a 

second-line therapy due to nasal irritation, 

hypocalcemia, and potential prostate cancer 

risk (49,154). Moreover, its antiresorptive 

efficacy is inferior to other agents (155). 

 

3.1.5. Cathepsin k inhibitors: 

Cathepsin K, secreted by osteoclasts, 

degrades collagen and bone matrix proteins, 

playing a central role in bone resorption. Its 

inhibition selectively suppresses resorption 

without impairing formation, presenting a 

novel therapeutic strategy (156).  

Odanacatib (MK-0822), an orally 

administered selective cathepsin K inhibitor, 

demonstrated dose-dependent lumbar spine 

and hip BMD improvements over 52 weeks 

in Japanese osteoporosis patients (156). 

Other inhibitors, including balicatib and 2H-

Pyran-4-propanoic acid derivatives, are 

under development (157–160). 

However, concerns regarding risks of 

stroke, atypical fractures, and 

pycnodysostosis necessitate cautious 

evaluation of long-term safety  

(157,160,161). 

 

3.1.6. Strontium ranelate: 

Strontium ranelate (SrR), composed of two 

stable strontium ions and one ranelic acid 

molecule (162), shares atomic properties 

with calcium, enabling substitution within 

bone matrix (163,164). Its mechanism likely 

involves calcium-sensing receptor (CaSR)-

mediated promotion of osteoblast 

differentiation and osteoprotegerin (OPG) 

production while inhibiting osteoclast 

activity (163–166). 

Despite efficacy, SrR is reserved for severe 

osteoporosis due to adverse effects, 

including venous thromboembolism, 

myocardial infarction, and rare 

hypersensitivity reactions like DRESS 

syndrome (167–171). 

 

3.2. Anabolic agents: 

Anabolic agents stimulate bone formation 

but are limited by concerns such as 

osteosarcoma risk, restricting their use to 

short-term therapy (129). 

 

3.2.1. PTH analogues: 

Teriparatide (PTH 1–34) retains the full 

biological activity of native parathyroid 

hormone (172). Administered intermittently, 

it stimulates osteoblast activity and bone 

formation during an initial “anabolic 

window” before resorption markers rise 

(173–176). 

Teriparatide, the first FDA-approved 

anabolic agent (112), improves BMD but is 

limited by high cost, injectable 

administration, and potential side effects 

like dizziness, nausea, and concerns about 

osteosarcoma with prolonged use, thus 

therapy is capped at two years (177–179). 

 

3.2.2. PTHrP (PTH related protein) 

analogues: 

Parathyroid hormone-related protein 

(PTHrP), produced by mesenchymal stem 

cells (MSCs), acts via PTH1R, similar to 

PTH (180–182). 

PTHrP analogues preferentially activate the 

RG conformation of PTH1R, resulting in 

stronger anabolic signaling compared to 

PTH (183–187). 

Abaloparatide, a synthetic PTHrP analogue, 

significantly increases BMD and reduces 

fracture risk with fewer hypercalcemia 

incidences compared to teriparatide 

(188,189). 

 However, side effects like GI disturbances, 

myalgia, and osteosarcoma risk still limit 

therapy duration to two years (177–

179,183). 

 

3.2.3. Statins: 

Statins, primarily used as lipid-lowering 

agents, inhibit endogenous cholesterol 

synthesis. Their effects on bone metabolism 

are dose-dependent: low doses may enhance 

bone resorption, while higher doses promote 

bone formation (190). 

Lovastatin and simvastatin, notable statins, 

reduce mevalonate production. Simvastatin, 

in particular, promotes bone formation by 

preventing apoptosis in osteoblast and 
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reducing osteoclast differentiation and 

resorptive activity (191). 

Cheon et al. (2021) demonstrated that 

pitavastatin suppresses RANKL-induced 

osteoclastogenesis by modulating Akt, NF-

κB, and MAPK pathways, resulting in the 

suppression of c-Fos and NFATc1—key 

transcription factors in osteoclast 

development. Statins also impact bone 

through reducing cholesterol availability, a 

precursor for the production of sex steroids 

(192). 

Leutner et al. (2019) observed an 

association involving statin use, circulating 

sex steroid concentrations, and osteoporosis 

risk. While the exact role of HMG-CoA 

reductase inhibition in osteoporosis remains 

uncertain, statins have shown benefit in 

osteoporotic patients, especially those with 

coexisting cardiovascular or cerebrovascular 

conditions (193). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 3: Overview of Current Osteoporosis Treatments. 

 

The image illustrates the targets of current 

osteoporosis therapies. Anti-resorptives like 

bisphosphonates, calcitonin, and denosumab 

inhibit osteoclast activity. Estrogen, 

SERMs, and cathepsin K inhibitors reduce 

bone breakdown. Anabolic agents such as 

PTH analogs and sclerostin antibodies 

stimulate osteoblast function and bone 

formation. Calcium, strontium ranelate, and 

CaSR activators aid in maintaining bone 

mineral density. 

 

3.3. Dual action therapy: 

3.3.1. Anti-sclerostin antibody: 

Romosozumab is an FDA-approved 

monoclonal antibody that targets sclerostin, 

exerting dual actions by reducing bone 

resorption and promoting bone formation 

(186). By inhibiting sclerostin, it activates 

the canonical Wnt signaling pathway, 

enhancing β-catenin activity, which 

increases osteoprotegerin (OPG) production 

in osteoblasts and downregulates RANKL, 

thereby inhibiting osteoclastogenesis 

(36,186,194). 

This mechanism results in both anabolic and 

antiresorptive effects. Administered 

subcutaneously, anti-sclerostin therapy has 

been linked to adverse effects, including 

elevated risks of stroke, myocardial 

infarction, and other cardiovascular events. 

The FRAME study also raised concerns 

about a potential link between Wnt 

signaling activation and cancer 

(186,195,196). Consequently, long-term use 

is not recommended. 

Comparative studies show romosozumab's 

superior efficacy over denosumab in 

increasing bone mineral density (BMD). At 

12 months, romosozumab increased lumbar 
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spine BMD by 12.5%, compared to 7.2% 

with denosumab. Similar improvements 

were noted in total hip and femoral neck 

BMD, supporting romosozumab as a more 

effective option for postmenopausal 

osteoporosis (197). 

 

3.3.2. Fluoride: 

Fluoride promotes osteoblast proliferation, 

enhances ALP activity, and stimulates TGF-

β1 signaling through ALK5 modulation 

(198,199),(200,201). 

At low doses, fluoride enhances bone 

formation by inhibiting phosphotyrosine 

phosphatase and activating mitogenic 

kinases (202,203), However, high doses are 

toxic to both osteoblasts and osteoclasts. 

Given its narrow therapeutic window 

(serum range 0.15–1.0 mg/L), slow-release 

formulations are preferred to maximize 

efficacy and minimize toxicity. 

 

3.4. Combination therapy: 

Given the limitations of current osteoporosis 

treatments, researchers have explored 

combination therapy, which involves using 

either two anti-resorptive agents or pairing 

an anti-resorptive with an anabolic agent. 

This strategy aims to achieve synergistic 

effects and improve treatment outcomes. 

Several studies have evaluated such 

combinations, yielding mixed results. For 

instance, combining PTH with alendronate 

or SERMs showed no significant 

improvement in BMD compared to PTH 

alone. In contrast, the combination of 

denosumab and teriparatide produced a 

modest increase in BMD, indicating 

potential synergy (168,204–207). 

Teriparatide has demonstrated efficacy as a 

monotherapy and in combination with 

agents like denosumab or abaloparatide. 

Analogues of PTH and PTHrP are 

established therapeutic options, used either 

alone, in combination, or sequentially with 

anti-resorptive agents (208). 

Despite some benefits, combination therapy 

is associated with increased cost and 

cumulative adverse effects. Therefore, it is 

generally reserved for patients at high 

fracture risk or those unresponsive to 

monotherapy. 

 

3.5. Sequential therapy: 

Sequential therapy, involving staged use of 

different agents, addresses combination 

therapy’s drawbacks. Transitioning from 

teriparatide to bisphosphonates maintains 

BMD gains and fracture reduction 

(209,210). 

The DATA-Switch study showed that 

teriparatide followed by denosumab further 

enhanced BMD at spine and hip (211). 

ACTIVE Extension revealed sustained 

fracture protection with abaloparatide 

followed by alendronate (212,213). 

The FRAME and ARCH studies confirmed 

durable BMD gains and vertebral fracture 

risk reduction when romosozumab was 

succeeded by denosumab or alendronate 

(195),(214). 

Sequential therapy thus offers superior 

fracture prevention and sustained BMD 

improvement compared to monotherapy. 

 Nonetheless, serious adverse effects and 

treatment limitations persist, emphasizing 

the need for novel therapies that effectively 

enhance bone biology while minimizing 

risks (215–217). 

 

4. CONCLUSION 

Osteoporosis is a multifaceted disease 

arising from disrupted bone remodeling, 

primarily due to estrogen deficiency, 

oxidative stress, and pro-inflammatory 

cytokines. Central pathways like 

RANK/RANKL/OPG and Wnt/β-catenin 

govern osteoblast and osteoclast activity and 

are heavily influenced by hormonal changes 

and reactive oxygen species. Estrogen 

withdrawal post-menopause, glucocorticoid 

therapy, and chronic inflammation enhance 

osteoclastogenesis while impairing 

osteoblast function and survival. 

Current therapies, including 

bisphosphonates, SERMs, calcitonin, 

denosumab, and anabolic agents such as 

teriparatide and abaloparatide, target 

specific components of bone metabolism. 

While these agents improve bone mineral 
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density and reduce fracture risk, adverse 

effects and treatment limitations necessitate 

cautious long-term use. Newer therapeutic 

strategies such as cathepsin K inhibitors, 

anti-sclerostin antibodies, and statins show 

promise due to their dual-action or bone-

anabolic effects. 
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